K大数查询
Description
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
Input
第一行N,M
接下来M行,每行形如1 a b c或2 a b c
Output
输出每个询问的结果
Sample Input
2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output
1
2
1
HINT
【样例说明】
第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置1的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数是1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3大的数是 1 。
N,M<=50000,N,M<=50000
a<=b<=N
1操作中abs(c)<=N
2操作中c<=Maxlongint
仿佛看见了树套树……
然而讨论区发现可以用整体二分……
思路:
可以说是CDQ分治和整体二分的结合吧?
考虑整体二分,每次二分一个答案,并维护答案在当前二分区间内的询问。
维护一个树状数组来描述每个位置有多少数大于当前二分的答案,需要支持区间修改和查询。
根据CDQ分治的思想,考虑按时间顺序扫描当前区间内的所有操作。
如果是添加数,若添加的数比二分的值大,则进行一次区间+1并将这个询问丢到右半边,否则直接丢到左半边。
如果是询问,如果区间的和大于当前查询的排名,则直接丢到右边,否则将当前所查询的排名值减去当前查询结果,并丢到左边。
然后一层层递归分治下去即可~
注意,答案会炸int,需使用unsigned int或long long。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll N=50009;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0' || '9'<ch){if(ch=='-')f=-1;ch=getchar();}
while('0'<=ch && ch<='9')x=x*10+(ch^48),ch=getchar();
return x*f;
}
struct op
{
ll id,ty,a,b,c;
bool operator < (op o)const{return id<o.id;}
}q[N],tmpl[N],tmpr[N];
ll n,m,atop;
ll ans[N];
ll bit[N],bits[N];
inline void modify(ll p,ll v)
{
for(ll i=p;i<=n;i+=(i&-i))
bit[i]+=v,bits[i]+=p*v;
}
inline ll query(ll p)
{
ll ret=0;
for(ll i=p;i;i-=(i&-i))
ret+=(p+1)*bit[i]-bits[i];
return ret;
}
inline ll qrange(ll l,ll r)
{
return query(r)-query(l-1);
}
inline void cdq(ll al,ll ar,ll l,ll r)
{
if(l==r)
{
for(ll i=al;i<=ar;i++)
if(q[i].ty==2)
ans[q[i].id]=l;
return;
}
ll mid=l+r>>1,lt=0,rt=0;ll ret;
for(ll i=al;i<=ar;i++)
if(q[i].ty==1)
{
if(mid<q[i].c)
{
modify(q[i].a,1);
modify(q[i].b+1,-1);
tmpr[++rt]=q[i];
}
else
tmpl[++lt]=q[i];
}
else
{
if((ret=qrange(q[i].a,q[i].b))>=q[i].c)
tmpr[++rt]=q[i];
else
{
q[i].c-=ret;
tmpl[++lt]=q[i];
}
}
ll amid=al+lt-1;
for(ll i=al;i<=amid;i++)
q[i]=tmpl[i-al+1];
for(ll i=amid+1;i<=ar;i++)
{
q[i]=tmpr[i-amid];
if(q[i].ty==1)
{
modify(q[i].a,-1);
modify(q[i].b+1,1);
}
}
cdq(al,amid,l,mid);
cdq(amid+1,ar,mid+1,r);
}
int main()
{
n=read();m=read();
for(ll i=1;i<=m;i++)
{
q[i].ty=read();
q[i].a=read();
q[i].b=read();
q[i].c=read();
if(q[i].ty==2)
q[i].id=++atop;
}
cdq(1,m,1,n);
for(ll i=1;i<=atop;i++)
printf("%lld\n",ans[i]);
return 0;
}