序列分割
Description
小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。
Input
输入第一行包含两个整数n,k(k+1≤n)。
第二行包含n个非负整数a1,a2,…,an(0≤ai≤10^4),表示一开始小H得到的序列。
Output
输出第一行包含一个整数,为小H可以得到的最大分数。
Sample Input
7 3
4 1 3 4 0 2 3
Sample Output
108
HINT
【样例说明】
在样例中,小H可以通过如下3轮操作得到108分:
1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置
将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。
2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数
字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+
3)=36分。
3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个
数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=
20分。
经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。
【数据规模与评分】:数据满足2≤n≤100000,1≤k≤min(n -1,200)。
为什么咱会去洛谷交这题……
洛谷卡精度卡了咱整整1h+……
(╯‵□′)╯︵┻━┻
思路:
首先可以发现分割的顺序是毫无意义的,按什么顺序分割结果都一样。
答案便是所有数的两两乘积减去每块内的数的两两乘积。
然后有个简单的
O(n2k)
的DP:
令
f[i][k]
表示
[1,i]
区间被分割了
k
次后,
f[i][k]=∑j=0i−1f[j][k−1]+(sum[i]−sum[j])∗(sum[n]−sum[i])
其中
[1,i]
的贡献是指
[1,i]
中每个数对序列上其他的所有不为同一块的数的乘积~
然后显然过不了,那么斜率优化一波,先不考虑第二维,令 k<j :
f[j]+(sum[i]−sum[j])∗(sum[n]−sum[i])>f[k]+(sum[i]−sum[k])∗(sum[n]−sum[i])
f[j]−f[k]>(sum[n]−sum[i])∗(sum[j]−sum[k])
f[j]−f[k]sum[j]−sum[k]>sum[n]−sum[i]
标准的斜率优化~
考虑到
sum[n]−sum[i]
递减,那么斜率递减,需要维护一个上凸壳,使用队列式存储,采用滚动数组卡空间,收工~
注意存在
ai=0
的情况,可能因除以
0
而RE,然而
另外如果在洛谷交可能会因为精度问题WA最后一个点,把除法换成乘法即可~
这样写在BZOJ上比直接用double快了整整一倍
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=100009;
const int K=209;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0' || '9'<ch){if(ch=='-')f=-1;ch=getchar();}
while('0'<=ch && ch<='9')x=x*10+(ch^48),ch=getchar();
return x;
}
int n,k,q[N],id[N],stk[N],tp,lt,rt;
ll a[N],s[N],f[2][N];
inline ll chkmax(ll &a,ll b){if(a<b)a=b;}
int main()
{
n=read();k=read();
for(int i=1;i<=n;i++)
{
s[i]=s[i-1]+(a[i]=read());
tp++;
if(a[i]==0)n--,i--;
else id[i]=tp;
}
int fl=0;
for(int l=1;l<=k+1;l++)
{
q[lt=rt=1]=0;
fl^=1;
ll *ff=f[fl^1];
for(int i=1;i<=n;i++)
{
while(lt<rt && (ff[q[rt]]-ff[q[rt-1]])*(s[i]-s[q[rt]])<=(ff[i]-ff[q[rt]])*(s[q[rt]]-s[q[rt-1]]))rt--;
q[++rt]=i;
while(lt<rt && f[fl^1][q[lt+1]]-f[fl^1][q[lt]]>=(s[q[lt+1]]-s[q[lt]])*(s[n]-s[i]))lt++;
chkmax(f[fl][i],f[fl^1][q[lt]]+(s[i]-s[q[lt]])*(s[n]-s[i]));
}
}
printf("%lld\n",f[fl][n]);
return 0;
}