[BZOJ3675][Apio2014]序列分割-斜率优化-动态规划

序列分割

Description

小H最近迷上了一个分隔序列的游戏。在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列。为了得到k+1个子序列,小H需要重复k次以下的步骤:
1.小H首先选择一个长度超过1的序列(一开始小H只有一个长度为n的序列——也就是一开始得到的整个序列);
2.选择一个位置,并通过这个位置将这个序列分割成连续的两个非空的新序列。
每次进行上述步骤之后,小H将会得到一定的分数。这个分数为两个新序列中元素和的乘积。小H希望选择一种最佳的分割方式,使得k轮之后,小H的总得分最大。

Input

输入第一行包含两个整数n,k(k+1≤n)。

第二行包含n个非负整数a1,a2,…,an(0≤ai≤10^4),表示一开始小H得到的序列。

Output

输出第一行包含一个整数,为小H可以得到的最大分数。

Sample Input

7 3
4 1 3 4 0 2 3

Sample Output

108

HINT

【样例说明】

在样例中,小H可以通过如下3轮操作得到108分:

1.-开始小H有一个序列(4,1,3,4,0,2,3)。小H选择在第1个数之后的位置

将序列分成两部分,并得到4×(1+3+4+0+2+3)=52分。

2.这一轮开始时小H有两个序列:(4),(1,3,4,0,2,3)。小H选择在第3个数

字之后的位置将第二个序列分成两部分,并得到(1+3)×(4+0+2+

3)=36分。

3.这一轮开始时小H有三个序列:(4),(1,3),(4,0,2,3)。小H选择在第5个

数字之后的位置将第三个序列分成两部分,并得到(4+0)×(2+3)=

20分。

经过上述三轮操作,小H将会得到四个子序列:(4),(1,3),(4,0),(2,3)并总共得到52+36+20=108分。

【数据规模与评分】:数据满足2≤n≤100000,1≤k≤min(n -1,200)。


为什么咱会去洛谷交这题……
洛谷卡精度卡了咱整整1h+……

(╯‵□′)╯︵┻━┻


思路:
首先可以发现分割的顺序是毫无意义的,按什么顺序分割结果都一样。
答案便是所有数的两两乘积减去每块内的数的两两乘积。

然后有个简单的 O(n2k) 的DP:
f[i][k] 表示 [1,i] 区间被分割了 k 次后,[1,i]的贡献的最大值:
f[i][k]=j=0i1f[j][k1]+(sum[i]sum[j])(sum[n]sum[i])
其中 [1,i] 的贡献是指 [1,i] 中每个数对序列上其他的所有不为同一块的数的乘积~

然后显然过不了,那么斜率优化一波,先不考虑第二维,令 k<j :

f[j]+(sum[i]sum[j])(sum[n]sum[i])>f[k]+(sum[i]sum[k])(sum[n]sum[i])

f[j]f[k]>(sum[n]sum[i])(sum[j]sum[k])

f[j]f[k]sum[j]sum[k]>sum[n]sum[i]

标准的斜率优化~
考虑到 sum[n]sum[i] 递减,那么斜率递减,需要维护一个上凸壳,使用队列式存储,采用滚动数组卡空间,收工~

注意存在 ai=0 的情况,可能因除以 0 而RE,然而0对答案毫无贡献所以可以事先除去~
另外如果在洛谷交可能会因为精度问题WA最后一个点,把除法换成乘法即可~
这样写在BZOJ上比直接用double快了整整一倍

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>

using namespace std;

typedef long long ll;
const int N=100009;
const int K=209;

inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0' || '9'<ch){if(ch=='-')f=-1;ch=getchar();}
    while('0'<=ch && ch<='9')x=x*10+(ch^48),ch=getchar();
    return x;
}

int n,k,q[N],id[N],stk[N],tp,lt,rt;
ll a[N],s[N],f[2][N];

inline ll chkmax(ll &a,ll b){if(a<b)a=b;}

int main()
{
    n=read();k=read();
    for(int i=1;i<=n;i++)
    {
        s[i]=s[i-1]+(a[i]=read());
        tp++;
        if(a[i]==0)n--,i--;
        else id[i]=tp;
    }

    int fl=0;
    for(int l=1;l<=k+1;l++)
    {
        q[lt=rt=1]=0;
        fl^=1;
        ll *ff=f[fl^1];
        for(int i=1;i<=n;i++)
        {
            while(lt<rt && (ff[q[rt]]-ff[q[rt-1]])*(s[i]-s[q[rt]])<=(ff[i]-ff[q[rt]])*(s[q[rt]]-s[q[rt-1]]))rt--;
            q[++rt]=i;
            while(lt<rt && f[fl^1][q[lt+1]]-f[fl^1][q[lt]]>=(s[q[lt+1]]-s[q[lt]])*(s[n]-s[i]))lt++;
            chkmax(f[fl][i],f[fl^1][q[lt]]+(s[i]-s[q[lt]])*(s[n]-s[i]));
        }
    }

    printf("%lld\n",f[fl][n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值