- 博客(24)
- 资源 (10)
- 收藏
- 关注
原创 图卷积网络:从理论到实践
图卷积网络(Graph Convolutional Networks, GCNs)彻底改变了基于图的机器学习领域,使得深度学习能够应用于非欧几里得结构,如社交网络、引文网络和分子结构。本文将解释GCN的直观理解、数学原理,并提供代码片段帮助您理解和实现基础的GCN。传统的CNN在图像或文本等网格状数据上表现良好,但对于节点连接各异且没有固定空间局部性的任意图结构却难以处理。GCN通过在图结构上执行卷积操作克服了这一限制。
2025-06-07 20:59:09
1043
原创 Cursor 1.0 版本 GitHub MCP 全面指南:从安装到工作流增强
本文详细介绍了Cursor 1.0版本中GitHub MCP的配置与使用指南。主要内容包括:1)如何启用Background Agent和关闭隐私模式;2)两种MCP服务器配置方式(内置或Docker);3)MCP专属输入界面的使用方法;4)Docker依赖关系说明;5)GitHub MCP的四大核心功能:代码生成、代码优化、测试生成和文档生成;6)如何将MCP融入开发工作流。文章强调Docker需手动启动,Cursor会自动管理容器,并指出MCP功能需通过专属入口调用。通过合理配置,MCP能显著提升开发效
2025-06-05 15:04:01
1238
2
原创 Cursor 1.0 新功能详解:BugBot、Background Agent、一键安装MCP等重磅更新
Cursor 1.0重磅发布,带来多项核心功能升级:1)自动代码审查工具BugBot可检测PR中的潜在问题并提供一键修复;2)Background Agent远程助手向所有用户开放;3)支持Jupyter Notebook的单元格级编辑;4)新增对话记忆功能,可跨会话引用关键信息;5)简化MCP服务器安装流程并支持OAuth认证;6)聊天响应支持Mermaid图表等可视化内容;7)全新优化的设置面板与使用统计仪表盘。这些更新显著提升了代码审查、协作开发和AI辅助编程的体验。
2025-06-05 07:31:03
1117
原创 2048游戏的技术实现分析-完全Java和Processing版
2048是一款由Gabriele Cirulli开发的经典益智游戏。本文将深入分析其Java实现版本的技术细节。该实现使用了Processing库来创建图形界面,采用了面向对象的设计方法,实现了一个完整的游戏系统。
2025-06-05 07:03:58
1014
原创 DeepSeek本地部署及WebUI可视化教程
本文详细介绍了如何在本地部署DeepSeek大模型并实现WebUI可视化。首先列出硬件要求(NVIDIA显卡16GB+显存)和软件要求(Linux/macOS系统、Python 3.8+)。然后分步骤说明:1)安装PyTorch和DeepSeek依赖;2)通过HuggingFace下载模型权重;3)使用Gradio搭建WebUI交互界面或使用Open WebUI等开源项目;4)介绍Ollama和CherryStudio两种便捷部署工具,Ollama适合极简部署,CherryStudio提供可视化模型管理。最
2025-06-04 23:01:18
926
原创 无监督学习-Complete Guide (较长)
无监督学习文章摘要 无监督学习是机器学习的重要分支,主要处理无标签数据,旨在发现隐藏模式或结构。其优势包括探索数据内在特性、降维、异常检测等。核心方法包括聚类(如K-Means、层次聚类)、降维(PCA)、密度估计和生成建模。与有监督学习不同,无监督学习无需预先标注数据,适用于市场分析、社交网络等场景。常用距离度量(欧氏、汉明等)是算法基础。示例展示了K-Means等算法的实际应用,通过可视化呈现聚类效果。无监督学习为数据挖掘和特征提取提供了强大工具。
2025-06-04 22:46:41
1219
原创 分类与逻辑回归 - 一个完整的guide
摘要:本文对比了参数模型(如线性回归、逻辑回归)与非参数模型(如KNN、决策树)的区别,重点探讨了逻辑回归中的sigmoid函数及其导数特性。通过3D可视化展示了多元sigmoid函数的形态,并介绍了交叉熵作为分类任务损失函数的原理。在分类模型部分,详细解析了感知机的工作原理及其局限性(如无法解决XOR问题),以及K近邻算法的流程与优缺点。文章包含代码示例,如sigmoid函数实现、AND门感知机训练及KNN分类器应用,强调模型选择需权衡复杂度与数据特性。(150字)
2025-06-04 19:29:32
1167
原创 金融中的线性优化:投资组合分配与求解器 - Part 2
本文探讨线性优化在金融中的应用,重点介绍如何利用Python及开源求解器CBC解决投资组合优化问题。文章通过示例展示线性规划(LP)和混合整数规划(MIP)的实现方法,包括目标函数最大化(如收益)和约束条件设置(如资产权重限制)。详细解析了CBC求解器的分支定界算法及其在金融领域的优势,涵盖投资组合优化、风险管理等场景。文中提供完整的PuLP代码实现,并演示整数规划在采购成本最小化问题中的应用,为金融决策提供量化工具支持。
2025-06-03 21:01:43
1133
原创 使用 fastai 进行文本分类的简明指南 - Fastai Part 5
这对中文很重要,因为它允许模型学习正确的词边界,避免以意想不到的方式分割词语。因此,我们可以将它们应用于fastai的NLP管道中使用的AWD-LSTM或基于Transformer的模型。在本系列的第2部分中,我们学习了如何将图像转换为数字以进行分类任务。注意,根据词汇表的大小,子词分词可能会产生不同的结果。词汇表越大,每句话的token越少,训练时间越快,但嵌入矩阵也越大。每个token要么是一个字符,要么是一个频繁出现的组合,这是模型从训练数据(原始文本)中随时间学习到的。(或新添加的分类层)。
2025-06-02 17:13:18
996
原创 Python 在金融中的应用- Part 1
本文介绍了在Python编程背景下理解金融线性模型的实践方法。首先探讨了资本资产定价模型(CAPM)的基本理论、公式推导及其Python实现,重点解释了贝塔系数的经济意义和应用场景。接着阐述了套利定价理论(APT)的多因子模型框架,对比了APT与CAPM的理论差异,并提供了OLS回归的Python代码示例。文章强调了线性模型在金融理论中的基础地位,它们既是现实世界的简化版本,也是理解更复杂非线性模型的起点。通过Python实现,读者可以直观地掌握CAPM贝塔计算和APT多因子回归分析的量化方法。
2025-06-02 10:57:11
1263
原创 从线性代数到线性回归——机器学习视角
对于nnnyiy_iyi:第iii个样本的真实值yi\hat{y}_iyi:模型对第iii个样本的预测值第iiiriyi−yiriyi−yi设zfxyzfxy,对xxx的偏导记为∂f∂x∂x∂f,对yyy的偏导记为∂f∂y∂y∂f。
2025-06-01 08:57:39
1271
原创 中文NLP with fastai - Fastai Part4
在本教程中,我们展示了如何将fastai的NLP功能适应中文文本处理。我们探索了:1. 中文的不同分词方法(词级与字符级)2. 为fastai创建自定义分词器3. 构建简单的中文文本分类器4. 比较不同方法对于有更大数据集的实际应用,您将遵循完整的ULMFiT方法:1. 在大型中文语料库上预训练语言模型2. 在特定领域数据上微调语言模型3. 使用语言模型微调分类器
2025-05-31 09:30:18
1526
原创 深入探究 MNIST 数据集 - Fastai 第三部分
本文深入探索了MNIST手写数字数据集的底层处理原理。通过分析数据集发现,虽然MNIST是灰度图像(单通道),但使用PILImage会默认转换为RGB三通道格式。通过NumPy和PyTorch的转换操作,展示了图像数据的数值化表示形式,并对比了不同通道的数据一致性。文章详细演示了如何计算数字3和7的平均模板图像,以及如何通过均方误差(MSE)衡量图像相似度,为后续神经网络训练建立基线模型。最后介绍了使用fastai的DataBlock加载完整MNIST数据集的方法,为神经网络训练做准备。
2025-05-30 13:54:29
1067
原创 图像分类最新指南 - Fastai 第二部分
本文介绍了获取图片数据并训练模型的完整流程。首先对比了多种图片数据源(DuckDuckGo、SerpAPI、Unsplash等)的优缺点,推荐使用Kaggle数据集。随后以Stanford Dogs数据集为例,展示了数据下载、探索和预处理方法,包括使用fastai库进行图片缩放和数据增强。最后使用ResNet34预训练模型进行微调训练,并提供了解决M1芯片PyTorch MPS回退问题的方案。整个过程涵盖了从数据获取到模型训练的关键步骤,适合计算机视觉初学者参考。
2025-05-26 14:01:31
1173
原创 缺失的部分 - 轻松入门 fastai 和 PyTorch - 第一部分
本文介绍了如何在Mac M1/M2芯片上搭建fastai深度学习开发环境。作者推荐使用miniforge3创建conda环境并安装支持MPS后端的PyTorch,从而在Apple Silicon上实现GPU加速。文章详细演示了环境配置步骤,包括安装验证和使用MNIST手写数字数据集训练简单分类模型的完整流程。虽然MPS仍存在一些功能限制,但这种本地配置为学习fastai提供了便利。作者也建议对大型模型训练使用Google Colab的GPU资源。
2025-05-24 18:01:17
1250
原创 利用扩散优化 (Diffusion Optimization)对城市智能电网优化
SGD被认为是黄金标准,利用经典优化理论,而扩散优化则提供。让我们从一个城市智能电网的例子开始,看看扩散优化是如何适用的。智能家庭,每个家庭都配备了太阳能电池板、智能电表、能源存储单元和本地处理器。接下来是扩散步骤,优化方法因此而得名,类似于热量如何扩散(传播)。总之,扩散模型提供了一种去中心化的范式,允许所有家庭仅通过本地计算和通信就能收敛。任何原始数据(如能源使用情况)都不会离开每个家庭,只共享模型更新。这些家庭形成了一个点对点网络,只与邻居进行通信。因此,这是一个具有隐私意识、可扩展性和弹性的架构。
2025-05-19 21:30:50
1048
原创 分形艺术探秘:TypeScript 实现数学之美
本文介绍了如何使用 TypeScript 生成分形图像,并探讨了分形的历史、生成方法及其实际应用。分形图像通过递归算法生成,如曼德博集合,其数学公式为 ( z_{n+1} = z_n^2 + c )。文章详细解释了如何通过 TypeScript 实现曼德博集合的计算,并使用 d3.js 进行渲染。分形不仅在艺术和计算机图形学中有广泛应用,还在金融领域用于模拟市场波动。文章最后提到,未来将探讨更高级的分形生成技术,如牛顿分形,并优化性能问题。分形连接了数学与视觉艺术,展示了其独特的美学价值。
2025-05-18 13:44:16
1105
原创 梯度下降法原理解析:从数学基础到实现
梯度下降法是机器学习中优化损失函数的核心算法,理解其数学基础至关重要。梯度来源于多元微积分,表示函数在特定点的变化率,指向函数增长最快的方向。在优化过程中,梯度下降通过计算梯度并沿其反方向更新参数,逐步逼近最小值。学习率的选择对收敛速度至关重要,过大或过小都会影响效果。梯度下降的变体如批量梯度下降、随机梯度下降和自适应方法等,分别针对不同问题进行了优化。通过TensorFlow等工具,可以方便地实现梯度下降,自动计算梯度并更新参数。理解梯度下降的数学原理及其在优化中的应用,是掌握机器学习算法的关键。
2025-05-17 18:35:36
936
原创 Perceptron (感知器):神经网络的基础构建块-含Python代码
了解感知器 - 神经网络的基础构建块。包含实用的Python实现、可视化解释和垃圾邮件检测等实际应用。适合机器学习初学者。
2025-05-16 13:29:20
1184
原创 遗传算法:从达尔文到霍兰德
在他极具影响力的著作《自然和人工系统中的适应性》(Adaptation in Natural and Artificial Systems) 中,他引入了诸如“选择 (selection)”、“交叉 (crossover)”和“变异 (mutation)”等核心概念,作为“进化”问题解决方案的机制。最后,新一代的后代会取代旧的种群(或其中的一部分)。我们取两个父代解决方案,混合它们的“基因 (genes)”(解决方案的组成部分),以创建一个或多个“后代 (offspring)”(新的解决方案)。
2025-05-12 20:11:29
647
原创 运筹优化:迭代局部搜索(ILS)指南
迭代局部搜索(ILS)是一种元启发式算法,用于解决复杂的优化问题。其核心思想是通过局部搜索和扰动步骤,在解空间中寻找更好的解决方案。局部搜索通过小范围调整当前解,找到局部最优解;而扰动则通过较大幅度的随机跳跃,帮助算法跳出局部最优,探索新的区域。ILS 的伪代码包括生成初始解、局部搜索、扰动和更新最优解等步骤。文章还提供了一个简单的 Python 实现,展示了如何用 ILS 最大化一个抛物线函数。此外,文章提到 ILS 在作业调度和旅行商问题(TSP)等经典优化问题中的应用,展示了其在实际问题中的广泛适用性
2025-05-12 15:56:22
1218
原创 可视化 A-Star 搜索
A* 搜索算法是一种基于启发式的路径搜索算法,结合了 Dijkstra 算法和贪婪最佳优先搜索的优点,用于找到从起点到目标点的最短路径。其核心思想是通过评估函数 ( f(n) = g(n) + h(n) ) 来选择路径,其中 ( g(n) ) 是从起点到当前节点的实际成本,( h(n) ) 是从当前节点到目标的启发式估计成本。A* 算法通过不断选择 ( f(n) ) 最小的节点进行扩展,直到找到目标节点。该算法具有最优性和完备性,前提是启发式函数 ( h(n) ) 是可接受的(即不高估实际成本)。A* 算法
2025-05-09 11:22:33
1087
原创 使用R预测员工流失
员工流失(或离职)是全球组织面临的重要问题。了解和预测哪些员工可能离职可以帮助公司实施保留策略,减少招聘和培训新员工的成本。AR在期X内离职的员工数期X内的员工总数×100AR = \frac{\text{在期X内离职的员工数}}{\text{期X内的员工总数}} \times 100AR期X内的员工总数在期X内离职的员工数×100。
2025-05-08 19:33:06
952
原创 是否使用 dropna()?
在实践中,如果仅处理 DataFrame,我们会选择使用 fillna(),因为它更方便。在数据集中,尤其是大型调查数据集中,缺失值是常见的。是否应用 dropna() 并不总是理想的,这取决于数据的性质和训练的目标。让我们以著名的 [行为风险因素监测系统(BRFSS)][1] 数据集为例。填充缺失数据有两种常见的方法。
2025-05-06 17:00:06
303
【区块链技术】基于Leaderless共识的Redbelly区块链系统设计:提升交易处理性能与可扩展性
2025-06-06
VIP资源MySQL安装与配置全流程指南:从环境搭建到基础操作
2025-06-05
Python安装与使用全攻略:从零基础到算法实战
2025-06-05
本VIP资源将手把手教你如何下载安装Anaconda、创建和管理虚拟环境、常用包管理命令,以及Anaconda的入门使用方法,适合Python初学者和数据科学爱好者
2025-06-05
DeepSeek本地部署及WebUI可视化教程
2025-06-04
【B区块链系统】共识机l制与 robuostness 分析:PoW、PoA、PoS、DBFT 的安全性和扩展性探讨
2025-05-30
python入门-1-scalar types
2025-05-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人