因为这段时间比较忙,所以频率比较低,那么我们话不多说,直接进入正题:
目录
1.青蛙跳台阶
1.1问题描述:
题目:一只青蛙一次可以跳1阶台阶,也可以跳2阶。求该青蛙跳上一个n 级的台阶总共有多少种跳法?
1.2问题分析:
由题意可简单分析:
到第1阶:1
到第2阶:1
到第3阶:2
到第4阶:3
到第5阶:5
......
到第n阶:(n-1)阶的跳法总数+(n-2)阶的跳法总数
如要跳到第三阶的话,要么从第一台阶跳两阶,要么从第二台阶跳一阶,因此到第三台阶的跳法总数就是到第一台阶的加上到第二台阶的。
我们发现1 1 2 3 5 8 13.....就是我们上篇讲过的裴波那契数列,因此思路一下子就清晰了。
1.3算法实现
#include<stdio.h>
//类比于斐波那契数列1 1 2 3 8 13 21 34 55
//递归方式 速度慢 求的过大时可能存在栈溢出--stack overflow
//函数递归实现青蛙跳台阶问题的解决
int Jump1(int n)
{
if (n <= 2)
{
return n;
}
else
{
return Jump1(n - 1) + Jump1(n - 2);
}
}
//使用循环解决问题
int Jump2(int n)
{
int a = 1;
int b = 2;
int c = n;
while (n > 2)
{
c = a + b;
a = b;
b = c;
n--;
}
return c;
}
int main()
{
int n = 0;
int ret = 0;
printf("请输入台阶数:");
scanf_s("%d", &n);
ret = Jump1(n);//递归函数
printf("递归法:有%d种跳法\n", ret);
ret = Jump2(n);//循环函数
printf("循环法:有%d种跳法\n", ret);
return 0;
}
因为我们在上篇已经对斐波那契数列进行了分析,此处不再赘述
2.汉诺塔问题:
2.1问题描述
有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,要把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方,请问至少需要多少次移动,设移动次数为H(n)。
可以去浏览器搜一下汉诺塔小游戏,尝试自己玩一下哦
2.2问题分析
如果n=1,则只需要把A柱的一个盘子放到c柱上
如果n=2,需要先把A柱的第一个盘子放到B柱,然后把A的第二个盘子放到c柱,最后把B的盘子移到c
当n>=3时,就把所有盘子分成两份,第一份是除最后一个盘子的所有盘子,第二份是最后一个盘子,如此,要把A全部挪到C时,首先把第一份挪到B上,然后把第二份挪到C上,最后把B上的第一份盘子挪到c上就行了
但实际上我们每次只能移动一个圆盘,因此我们对第一份圆盘的挪用作为问题,将它进行分解,子问题就是对每一个圆盘的移动,当圆盘个数为1时,直接将A上的原盘移动到C,以此作为递归出口,同次类似,然后使用递归将B上的所有盘子依次移动到C柱上即可。
问题的解决三步走战略:n-1->b;1->c;n-1->c
递归出口——n==1,直接移动即可,无需进入递归
2.3算法实现
//汉诺塔递归问题:
#pragma warning(disable:4996)
#include<stdio.h>
void Move(char m, char n)
{
printf("移动%c -> %c\n", m, n);
return;
}
void Hanoi(int n, char x, char y, char z)
{
//设置递归条件,当n=1时,只需将x上的最后一个盘子移动到z上即可
if (1 == n)
{
Move(x, z);
}
else
{
//第一步,把n-1个盘子从x移动到y
Hanoi(n - 1, x, z, y);
//第二步,把最后一个盘子从x柱移到z柱
Move(x, z);
//第三步,把n-1个盘子从y柱移到z柱
Hanoi(n - 1, y, x, z);
}
}
int main()
{
//汉诺塔问题的递归
//首先要有三个圆柱
char a = 'a', b = 'b', c = 'c';
//然后要有对应的盘子
int n;
scanf("%d", &n);
//调用函数实现递归
Hanoi(n, a, b, c);
return 0;
}
如此汉诺塔问题就可以解决啦,大家可以去和朋友一起去玩这个游戏,看谁先完成,然后自己偷偷把代码运行,直接抄答案(手动滑稽)
到这里后我们的函数章节正式宣告结束,接下来将进入数组~~~