c语言初阶(2-函数—实战收尾篇-青蛙跳台阶-汉诺塔问题)

      因为这段时间比较忙,所以频率比较低,那么我们话不多说,直接进入正题:

 

      

目录

1.青蛙跳台阶

1.1问题描述:

1.2问题分析:

1.3算法实现

2.汉诺塔问题:

2.1问题描述

2.2问题分析

2.3算法实现 


1.青蛙跳台阶

1.1问题描述:

     题目:一只青蛙一次可以跳1阶台阶,也可以跳2阶。求该青蛙跳上一个n 级的台阶总共有多少种跳法?

1.2问题分析:

由题意可简单分析:

到第1阶:1

到第2阶:1

到第3阶:2

到第4阶:3

到第5阶:5

......

到第n阶:(n-1)阶的跳法总数+(n-2)阶的跳法总数

      如要跳到第三阶的话,要么从第一台阶跳两阶,要么从第二台阶跳一阶,因此到第三台阶的跳法总数就是到第一台阶的加上到第二台阶的。

     我们发现1 1 2 3 5 8 13.....就是我们上篇讲过的裴波那契数列,因此思路一下子就清晰了。

1.3算法实现

#include<stdio.h>
//类比于斐波那契数列1 1 2 3  8 13 21 34 55
//递归方式	速度慢  求的过大时可能存在栈溢出--stack overflow

//函数递归实现青蛙跳台阶问题的解决
int Jump1(int n)
{
	if (n <= 2)
	{
		return n;
	}
	else
	{
		return Jump1(n - 1) + Jump1(n - 2);
	}
}
//使用循环解决问题
int Jump2(int n)
{
	int a = 1;
	int b = 2;
	int c = n;
	while (n > 2)
	{
		c = a + b;
		a = b;
		b = c;
		n--;
	}
	return c;
}

int main()
{
	int n = 0;
	int ret = 0;
	printf("请输入台阶数:");
	scanf_s("%d", &n);

	ret = Jump1(n);//递归函数
	printf("递归法:有%d种跳法\n", ret);

	ret = Jump2(n);//循环函数
	printf("循环法:有%d种跳法\n", ret);	
	return 0;
}

因为我们在上篇已经对斐波那契数列进行了分析,此处不再赘述

2.汉诺塔问题:

2.1问题描述

      有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,要把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方,请问至少需要多少次移动,设移动次数为H(n)。

  可以去浏览器搜一下汉诺塔小游戏,尝试自己玩一下哦

2.2问题分析

     如果n=1,则只需要把A柱的一个盘子放到c柱上

     如果n=2,需要先把A柱的第一个盘子放到B柱,然后把A的第二个盘子放到c柱,最后把B的盘子移到c

     当n>=3时,就把所有盘子分成两份,第一份是除最后一个盘子的所有盘子,第二份是最后一个盘子,如此,要把A全部挪到C时,首先把第一份挪到B上,然后把第二份挪到C上,最后把B上的第一份盘子挪到c上就行了

      但实际上我们每次只能移动一个圆盘,因此我们对第一份圆盘的挪用作为问题,将它进行分解,子问题就是对每一个圆盘的移动,当圆盘个数为1时,直接将A上的原盘移动到C,以此作为递归出口,同次类似,然后使用递归将B上的所有盘子依次移动到C柱上即可。

问题的解决三步走战略:n-1->b;1->c;n-1->c

       递归出口——n==1,直接移动即可,无需进入递归

2.3算法实现 

//汉诺塔递归问题:
#pragma warning(disable:4996)
#include<stdio.h>

void Move(char m, char n)
{
	printf("移动%c -> %c\n", m, n);
	return;
}

void Hanoi(int n, char x, char y, char z)
{
	//设置递归条件,当n=1时,只需将x上的最后一个盘子移动到z上即可
	if (1 == n)
	{
		Move(x, z);
	}
	else
	{
		//第一步,把n-1个盘子从x移动到y
		Hanoi(n - 1, x, z, y);
		//第二步,把最后一个盘子从x柱移到z柱
		Move(x, z);
		//第三步,把n-1个盘子从y柱移到z柱 
		Hanoi(n - 1, y, x, z);
	}
}

int main()
{
	//汉诺塔问题的递归
	//首先要有三个圆柱
	char a = 'a', b = 'b', c = 'c';
	//然后要有对应的盘子
	int n;
	scanf("%d", &n);
	//调用函数实现递归
	Hanoi(n, a, b, c);
	return 0;
}


       如此汉诺塔问题就可以解决啦,大家可以去和朋友一起去玩这个游戏,看谁先完成,然后自己偷偷把代码运行,直接抄答案(手动滑稽)

      到这里后我们的函数章节正式宣告结束,接下来将进入数组~~~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鲸落之·海

哇塞,我将因此动力加倍!冲冲冲

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值