完全二叉树的权值
时间限制: 1Sec 内存限制: 128MB
题目描述:
给定一棵包含 N 个节点的完全二叉树,树上每个节点都有一个权值,按从 上到下、从左到右的顺序依次是 A1, A2, · · · AN,如下图所示:
现在小明要把相同深度的节点的权值加在一起,他想知道哪个深度的节点 权值之和最大?如果有多个深度的权值和同为最大,请你输出其中最小的深度。
注:根的深度是 1。
输入:
第一行包含一个整数 N。 第二行包含N个整数A1,A2,··· AN。
输出:
输出一个整数代表答案。
样例输入:
7
1 6 5 4 3 2 1
样例输出:
2
二叉树分析及特点
本题所用到二叉树的特点
- [ 1 ] :一个二叉树在第k层上最大结点数2^(k-1),k>=1;
- [ 2 ] : 一个深度为k且具有2^k -1个结点的二叉树称为满二叉树;
- [ 3 ] : 深度为k的,有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称为完全二叉树;
- [ 4 ] : 当二叉树根节点从1开始时,当父节点为i时,其左儿子为2i,右儿子为2i+1。
附上两张图片更好理解:


二叉树实际分析:
类似于下面这样的完全二叉树:
1、我们先要知道输入的二叉树的深度:
while(m)
{
m=m/2;
k++;
}
//求二叉树的深度;
当我们知道深度了之后就能限定每一层的结点数最大为多少:
当深度为i的时候,第i层的结点数就应该从2^(i-1) 到2 ^i -1之间,而求2的i次方,我们可以借助math库函数里面的pow(2,i)来计算:
2^(i-1)是每一层节点开始的下标,2 ^i -1是每一层节点结束的下标 。
for(i=1; i<k; i++)
{
sum=0;
ll t1=pow(2,i-1),t2=pow(2,i);
for(j=t1; j<=t2-1; j++)
sum+=a[j];
if(sum>maxx)
{
maxx=sum;
flag=i;
}
}
由于是完全二叉树,最后一层的节点数可能不满,所以要单独计算!!!
sum=0;
for(i=pow(2,k-1); i<=n; i++)
sum+=a[i];
最后只需再比较一下即可。
AC代码:
/*
完全二叉树的权值
*/
#include<stdio.h>
#include<string.h>
#include<math.h>//pow()函数的头文件
typedef long long ll;
//#define ll long long
int main()
{
ll n,maxx=-100010;
scanf("%lld",&n);
ll i,j,a[100010];
for(i=1; i<=n; i++)
scanf("%lld",&a[i]);
ll m=n,k=0,flag;
while(m)
{
m=m/2;
k++;
}
ll sum;
for(i=1; i<k; i++)
{
sum=0;
ll t1=pow(2,i-1),t2=pow(2,i);
for(j=t1; j<=t2-1; j++)
sum+=a[j];
if(sum>maxx)
{
maxx=sum;
flag=i;
}
}
sum=0;
for(i=pow(2,k-1); i<=n; i++)
sum+=a[i];
if(sum>maxx)
flag=k;
printf("%lld\n",flag);
return 0;
}