神经网络
文章平均质量分 82
zzz1_1zzz
这个作者很懒,什么都没留下…
展开
-
BP神经网络
1. 什么是BP神经网络?BP神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的全职和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)隐层(hide layer)和原创 2016-09-22 23:27:59 · 8427 阅读 · 0 评论 -
卷积神经网络
1. 什么是卷积神经网络?卷积神经网络(CNN)是一种源于人工神经网络(NN)的深度机器学习方法,近年来在图像标识领域取得了巨大的成功,卷积神经网络在多个方向持续发力,在语音识别、人脸识别、通用物体识别、运动分析、自然语言处理甚至脑电波分析方面均有突破。CNN由于采用局部连接和级值共享,保持了网络的深层结构,同时又大大减少了网络参数,使模型具有良好的泛化能力又较容易训练。NN的训练原创 2016-09-23 22:54:23 · 7392 阅读 · 0 评论 -
神经网络简介
一、神经网络的特点1.信息处理的并行性、信息存储的分布性、信息处理单元的互联性、结构的可塑性人工神经网络是由大量简单处理元件相互连接构成的高度并行的非线性系统,具有大规模并行性处理特性。虽然每个处理但与的功能十分简单,但是大量简单处理单元的并行活动使网络呈现出丰富的功能并具有较快的速度。结构上的并行性使网络的信息存储必然采用分布方式,即信息不是存储在网络的某个局部,而是分布在网络所有的原创 2016-09-20 20:31:41 · 2238 阅读 · 0 评论 -
倒谱
1. 什么是倒谱?倒谱(cepstrum):一种信号的傅里叶变换谱经过对数运算后再进行傅里叶反变换。由于一般傅里叶谱是复数谱,因而又称复倒谱。2. 倒频谱的数学描述倒频谱函数CF(q)(power cepstrum)其数学表达式为:CF(q)= |F(logSx(f))|2CF(q)又叫功率倒频谱,或叫对数功率谱的功率谱,工程上常用开方形式:C0(q原创 2016-09-24 23:50:42 · 25182 阅读 · 5 评论 -
神经网络原理及应用
1. 什么是神经网络?神经网络是一种模拟动物神经网络行为特征,进行分布式并行信息处理的算法。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人类的神经网络2. 神经网络基础知识构成:大量简单的基础元件——神经元相互连接工作原理:模拟生物的神经处理信息的方式功能:进行信息的并行处理和非线性转化特点:比原创 2016-09-21 23:02:30 · 11947 阅读 · 1 评论 -
MFCC倒谱系数
1. 什么是MFCC?MFCC是Mel频率倒谱系数(melfrequency cepstrum,MFCC)的缩写,Mel频率是基于人耳听觉特性提出来的,它与Hz频率成非线性对应关系。MFCC则是利用它们之间的这种关系计算得到频率特征,MFCC已经广泛应用在语音识别领域。由于Mel频率与Hz频率之间非线性的对应关系,使得MFCC随着频率的提高,其计算精度随之下降。因此,在应用中常常只原创 2016-09-25 20:09:44 · 3015 阅读 · 0 评论 -
MFCC特征参数提取过程详解
1. MFCC概述在语音识别(Speech Recognition)和话者识别(Speaker Recognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scale FrequencyCepstral Coefficients,简称MFCC)。根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度。从200Hz到5000Hz的语音信号对语音的清晰度影响对原创 2016-09-26 20:54:47 · 13166 阅读 · 0 评论 -
MFCC倒谱系数特征提取与识别
首先,整合一下上一篇的基本内容:MFCC参数的提取过程。耳蜗实质上相当于一个滤波器组,耳蜗的滤波作用是在对数频率尺度上进行的,在1000HZ下,人耳的感知能力与频率成线性关系;而在1000HZ以上,人耳的感知能力与频率不构成线性关系,而更偏向于对数关系,这就使得人耳对低频信号比高频信号更敏感。Mel频率的提出是为了方便人耳对不同频率语音的感知特性的研究。频率与Mel频率的转换公式为:原创 2016-09-27 22:34:17 · 3865 阅读 · 0 评论