题目
给定一个未排序的整数数组 nums
,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。
请你设计并实现时间复杂度为 O(n)
的算法解决此问题。
示例 1:
输入:nums = [100,4,200,1,3,2]
输出:4
解释:最长数字连续序列是 [1, 2, 3, 4]。它的长度为 4。
示例 2:
输入:nums = [0,3,7,2,5,8,4,6,0,1] 输出:9
提示:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
方法一 :暴力求解
最简单的实现方法,首先对数组进行排序,之后再遍历数组进行条件判断nums[i]==nums[i-1]+1。如果满足,那么连续长度加一,如果不连续,记录当前连续长度,然后重置连续长度。不过该方法有一个问题就是,对数组进行排序的话,时间复杂度不满足要求了。具体代码如下
class Solution {
public int longestConsecutive(int[] nums) {
//非空判断
if(nums.length==0 | nums==null){
return 0;
}
//连续长度
int length=1;
//接收每次最大长度
int temp=1;
Arrays.sort(nums);
for(int i=1;i<nums.length;i++){
if(nums[i]==nums[i-1]+1){
length++;
}else if(nums[i]!=nums[i-1]){
if(temp<length){
temp=length;
}
length=1;
}
}
if(temp<length){
return length;
}
return temp;
}
}
方法二:哈希表
该思路是,先将数组中相同的数字去重之后,遍历set集合中的数字,从一段连续数字中的最小数字开始查询set集合中是否包含比当前数字还要大1的数字
class Solution {
public int longestConsecutive(int[] nums) {
Set<Integer> num_set = new HashSet<Integer>();
//去重
for (int num : nums) {
num_set.add(num);
}
int longestStreak = 0;
for (int num : num_set) {
//查看该数字有没有向下连续的数字。没有就判断有没有向上连续的
//如果存在比该数字还小1的数字,那么什么也不做,遍历下一个数
if (!num_set.contains(num - 1)) {
int currentNum = num;
int currentStreak = 1;
while (num_set.contains(currentNum + 1)) {
currentNum += 1;
currentStreak += 1;
}
if(longestStreak<currentStreak){
longestStreak=currentStreak;
}
}
}
return longestStreak;
}
}