欧几里得算法求最大公约数的递归和非递归实现

本文介绍了欧几里得算法的四种实现方式,包括递归和非递归方法,如递归求最大公约数、连续整数检测算法和欧几里得减法。详细阐述了每种算法的步骤并举例说明,帮助理解其工作原理。递归与非递归的选择主要考虑性能和可读性平衡。
摘要由CSDN通过智能技术生成

递归定义必须是有明确含义,是指必须一步比一步简单,最终是有终结的,绝不能无限循环下去

所有的递归函数都能找到对应的非递归定义

递归的性能相对于非递归来说,并没有性能上的优势,实际上,有时候使用循环的性能更好。如果使用循环,程序的性能可能更高,如果使用递归,程序可能更容易理解。如何选择要看什么对你更重要

 

第一种,用于计算gcd(m,n)的欧几里得算法(递归)

举个例子来简单的解释一下欧几里得算法的思路

欧几里得算法采用的方法是重复gcd(m,n)=gcd(n,m mod n),直到m mod n等于0。详细一点说,就是:

第一步:如果n=0,返回m的值作为结果,同时过程结束,否则,进入第二步

第二步:m mod n的余数赋值给r

第三步:将n的值赋给m,将r的值赋给n,返回第一步

比如说:

gcd(60,24)=gcd(24,60 mod 24)=gcd(24,12)=gcd(12,24 mod 12)=gcd(12,0)=12

#include<stdio.h>
#include<iostream>
using namespace std;
int gcd(int m,int n){  //辗转相除法+递归调用
   if(n==0)//如果n=0,返回m的值作为结果
       return m;
   else
      return gcd(n,m%n);//递归调用
}
int main(){
   int m,n;
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值