题目描述
Description
Input
Output
Sample Input
3 3
2 3 4
1 1 2 2
1 2 3 5
1 3 3 2
Sample Output
14
HINT
Source
单纯形
题解
单纯形法解线性规划,参考资料:点这
这里是最小化目标函数,并且限制条件是大于等于。用对偶原理可以转化为标准的线性规划。
对偶原理:
将限制矩阵转置一下,就是a[i,j]变成a[j,i],然后目标函数的系数和每个限制的那个常数也互换一下。就可以将大于等于变为小于等于,将最小化变为最大化。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#include<vector>
using namespace std;
const int N=1010;
long long a[N*10][N],b[N*10],c[N],v,k;
int x,y,n,m,s,t;
void pivot(int x,int y){
k=a[x][y]; b[x]/=k; a[x][y]=1;
for(int i=1;i<=n;i++) a[x][i]/=k;
for(int i=1;i<=m;i++)
if(i!=x&&a[i][y]){
k=a[i][y]; b[i]-=b[x]*k; a[i][y]=0;
for(int j=1;j<=n;j++) a[i][j]-=a[x][j]*k;
}
k=c[y]; c[y]=0; v+=k*b[x];
for(int i=1;i<=n;i++) c[i]-=k*a[x][i];
}
void solve(){
for(int x=0,y=0;1;x=y=0){
for(int i=1;i<=m;i++) if(b[i]<0) x=i;
if(!x) break;
for(int i=1;i<=n;i++) if(a[x][i]<0) y=i;
if(!y){puts("Infeasible"); return;}
pivot(x,y);
}
for(int x=0,y=0;1;x=y=0){
for(int i=1;i<=n;i++) if(c[i]>c[x]) x=i;
if(c[x]<=0) break;
for(int i=1;i<=m;i++)
if(a[i][x]>0&&(!y||b[y]*a[i][x]>b[i]*a[y][x])) y=i;
if(!y){puts("Unbounded"); return;}
pivot(y,x);
}
printf("%lld\n",v);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%lld",&c[i]);
for(int i=1;i<=m;i++){
scanf("%lld",&k);
for(int j=1;j<=k;j++){
scanf("%d%d",&s,&t);
for(int l=s;l<=t;l++) a[i][l]=1;
}
scanf("%lld",&b[i]);
}
solve();
return 0;
}