你知道吗?数据标注通常采用一组未标记的数据,每个未标记的数据都嵌入在一个信息丰富且有意义的标签中。事实上,数据标记也是一种用一个或多个标签标记一组样本数据的技术。
有几种方法可以为机器学习标记数据:
图像注释
其有助于使图像通过计算机视觉变得可读。带注释的图像对于其他全自动算法结果的性能计算非常有用。它们被称为基准、基本事实或参考数据。
通过与标记图像的比较,可以计算出全自动算法的真伪和虚警。机器学习中的标注就是数据标注的过程,可以是文本、图像、音频等多种形式。
在学习时,计算机可以使用带注释的数据来学习在呈现新数据时识别相似的模式。
其实还有许多用于图像注释的注释技术,如:
立方体
围绕所需的小工具、车辆、建筑物甚至人创建3D高质量标签,以获得对象的整体空间或体积。主要应用于建筑和物体识别领域。
语义分割
在用于计算机视觉的图像标注中,语义分割是将数字图像分成多个片段的过程,从而将图像表示改变成更有意义和更容易分析的东西。
关键点
在图像中准确对数据标记出物体的所有需要的部分,有助于分析物体的位置和大小。主要标记对象的z外点。
如车辆,我们标注z外面的点,比如车轮、后视镜、大灯。
编修
图像注释中的编辑用于模糊敏感和个人可识别信息。编辑保护框架里看到的人、房子、车牌的隐私和身份。
包围盒
包围盒是计算机视觉图像数据标注的一种重要方法。是给定帧周围的对象绑定一个完框架,以便进行一般识别。
多边形
以精度生成框架中对象的边界,并且对象的形状和大小被清楚地定义。这是对机器学习对象进行分类的快、智能和有力的方式。
如果您想找个靠谱的线上兼职工作,可随时联系我们。