LeetCode—198.打家劫舍(House Robber)——分析及代码(C++)

这篇博客详细介绍了LeetCode中的198题——打家劫舍,通过动态规划的方法解决。博主分别给出了两种不同的动态规划实现,第一种方法的状态转移方程为dp[i] = max(nums[i - 3] + nums[i], nums[i - 2]),而第二种方法的状态转移方程为dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])。每种方法都附有代码实现,并展示了执行时间和内存消耗。" 111688248,10294716,MySQL DDL 算法详解:INSTANT 与减少业务影响策略,"['MySQL', 'DDL', '数据库管理', '性能优化', '数据库设计']
摘要由CSDN通过智能技术生成

一、题目

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12 。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/house-robber
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

二、分析及代码

1. 动态规划(写法一)

(1)思路

本题状态转移方程直观清晰,可以用动态规划方法求解。
1)只有1个房屋时,最高金额为该房屋金额;
2)只有2个房屋时,最高金额为其中较大者;
3)有3个房屋时,最高金额为 1、3 金额之和与 2 中金额的较大者;
4)对之后的第 i 间房屋,进入该房屋的总最高金额为 max(nums[i - 3], nums[i - 2]) + nums[i];(更早的金额已包含在nums[i - 3] 或 nums[i - 2] 中);
5)所有房屋最高金额为,max(nums[size - 1], nums[size - 2])(只能选择去最后一屋或倒数第二屋)。

(2)代码

class Solution {
   
public:
    int rob(vector<int>& nums) {
   
        if (nums.empty())
            return 0;
        if (nums.size() == 1)
            return nums[0]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值