LeetCode——1819. 序列中不同最大公约数的数目(Number of Different Subsequences GCDs)[困难]——分析及代码(Java)

LeetCode——1819. 序列中不同最大公约数的数目[Number of Different Subsequences GCDs][困难]——分析及代码[Java]

一、题目

给你一个由正整数组成的数组 nums 。
数字序列的 最大公约数 定义为序列中所有整数的共有约数中的最大整数。

  • 例如,序列 [4,6,16] 的最大公约数是 2 。

数组的一个 子序列 本质是一个序列,可以通过删除数组中的某些元素(或者不删除)得到。

  • 例如,[2,5,10] 是 [1,2,1,2,4,1,5,10] 的一个子序列。

计算并返回 nums 的所有 非空 子序列中 不同 最大公约数的 数目 。

示例 1:

输入:nums = [6,10,3]
输出:5
解释:不同的最大公约数为 6 、10 、3 、2 和 1 。

示例 2:

输入:nums = [5,15,40,5,6]
输出:7

提示:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i] <= 2 * 10^5

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-different-subsequences-gcds
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

二、分析及代码

1. 枚举

(1)思路

根据数学定义,若数字 i 为某子序列的最大公约数,则该序列中的数字,一定都是 i 的倍数。
因此可枚举可能的数字 i ,在 nums 中寻找这些数字的倍数,若它们的最大公约数为 i,说明 i 是某子序列的最大公约数。

(2)代码

class Solution {
   
    public int countDifferentSubsequenceGCDs(int[] nums
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值