LeetCode——1889. 装包裹的最小浪费空间(Minimum Space Wasted From Packaging)[困难]——分析及代码(Java)

这篇博客介绍了LeetCode 1889题目的详细解析,包括问题背景、最优解决方案(排序+二分查找+前缀和),以及Java代码实现。博主分享了通过排序包裹和箱子、结合二分查找和前缀和来求解最小浪费空间的方法,最终实现了高效的时间复杂度并给出了执行性能反馈。
摘要由CSDN通过智能技术生成

LeetCode——1889. 装包裹的最小浪费空间[Minimum Space Wasted From Packaging][困难]——分析及代码[Java]

一、题目

给你 n 个包裹,你需要把它们装在箱子里,每个箱子装一个包裹。总共有 m 个供应商提供 不同尺寸 的箱子(每个规格都有无数个箱子)。如果一个包裹的尺寸 小于等于 一个箱子的尺寸,那么这个包裹就可以放入这个箱子之中。

包裹的尺寸用一个整数数组 packages 表示,其中 packages[i] 是第 i 个包裹的尺寸。供应商用二维数组 boxes 表示,其中 boxes[j] 是第 j 个供应商提供的所有箱子尺寸的数组。

你想要选择 一个供应商 并只使用该供应商提供的箱子,使得 总浪费空间最小 。对于每个装了包裹的箱子,我们定义 浪费的 空间等于 箱子的尺寸 - 包裹的尺寸 。总浪费空间 为 所有 箱子中浪费空间的总和。

  • 比方说,如果你想要用尺寸数组为 [4,8] 的箱子装下尺寸为 [2,3,5] 的包裹,你可以将尺寸为 2 和 3 的两个包裹装入两个尺寸为 4 的箱子中,同时把尺寸为 5 的包裹装入尺寸为 8 的箱子中。总浪费空间为 (4-2) + (4-3) + (8-5) = 6 。

请你选择 最优 箱子供应商,使得 总浪费空间最小 。如果 无法 将所有包裹放入箱子中,请你返回 -1 。由于答案可能会 很大 ,请返回它对 10^9 + 7 取余 的结果。

示例 1:

输入:packages = [2,3,5], boxes = [[4,8],[2,8]]
输出:6
解释:选择第一个供应商最优,用两个尺寸为 4 的箱子和一个尺寸为 8 的箱子。
总浪费空间为 (4-2) + (4-3) + (8-5) = 6 。

示例 2:

输入:packages = [2,3,5], boxes = [[1,4],[2,3],[3,4]]
输出:-1
解释:没有箱子能装下尺寸为 5 的包裹。

示例 3:

输入:packages = [3,5,8,10,11,12], boxes = [[12],[11,9],[10,5,14]]
输出:9
解释:选择第三个供应商最优,用两个尺寸为 5 的箱子,两个尺寸为 10 的箱子和两个尺寸为 14 的箱子。
总浪费空间为 (5-3) + (5-5) + (10-8) + (10-10) + (14-11) + (14-12) = 9 。

提示:

  • n == packages.length
  • m == boxes.length
  • 1 <= n <= 10^5
  • 1 <= m <= 10^5
  • 1 <= packages[i] <= 10^5
  • 1 <= boxes[j].length <= 10^5
  • 1 <= boxes[j][k] <= 10^5
  • sum(boxes[j].length) <= 10^5
  • boxes[j] 中的元素 互不相同 。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-space-wasted-from-packaging
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

二、分析及代码

1. 排序 + 二分查找 + 前缀和

(1)思路

根据题目要求,可在遍历供应商的过程中,将包裹和所提供的箱子按大小排序后,结合双指针方法依次尝试匹配,得到最小浪费空间。
为降低时间复杂度,可结合二分法查找可装下当前包裹的最小箱子,及当前箱子能装下的最大包裹,并结合前缀和方法进一步简化所浪费空间的计算过程。

(2)代码

class Solution {
   
    public int minWastedSpace(int[] packages, int[][] boxes) {
   
        i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值