一、题目
你的任务是计算 a^b 对 1337 取模,a 是一个正整数,b 是一个非常大的正整数且会以数组形式给出。
示例 1:
输入:a = 2, b = [3]
输出:8
示例 2:
输入:a = 2, b = [1,0]
输出:1024
示例 3:
输入:a = 1, b = [4,3,3,8,5,2]
输出:1
示例 4:
输入:a = 2147483647, b = [2,0,0]
输出:1198
提示:
- 1 <= a <= 2^31 - 1
- 1 <= b.length <= 2000
- 0 <= b[i] <= 9
- b 不含前导 0
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/super-pow
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
二、分析及代码
1. 遍历
(1)思路
结合快速幂算法,对指数从高位至低位(或从低位至高位)依次计算,详细分析可见官方题解。
(2)代码
class Solution {
const int MOD = 1337;
int pow(int base, int exp) {//快速幂
int res = 1;
while (exp > 0) {
if (exp & 1) {
res = (long)res * base % MOD;
}
exp >>= 1;
base = (long)base * base % MOD;
}
return res;
}
public:
int superPow(int a, vector<int>& b) {
int ans = 1;
for (int i = 0; i < b.size(); i++) {//从高位至低位依次计算
ans = (long)pow(ans, 10) * pow(a, b[i]) % MOD;
}
return ans;
}
};
(3)结果
执行用时 :8 ms,在所有 C++ 提交中击败了 86.98% 的用户;
内存消耗 :11.4 MB,在所有 C++ 提交中击败了 56.08% 的用户。
三、其他
暂无。