
AI/机器学习
零度anngle
情商不是八面玲珑的圆滑,而是德行具足后的虚心、包容和自信;成熟不是单纯到复杂的世故,而是复杂回归简单的超然;觉悟不是对世事的无所谓,而是对无能为力之事的坦然接受;成功不是追求别人眼中的最好,而是把自己能做的事情做得最好。热爱生活,热爱编程,热爱Java,喜欢探索,纸上得来终觉浅,绝知此事要躬行,愿与你一起在技术的海洋中成长!
博客:http://blog.csdn.net/zmx729618
展开
-
机器学习入门系列01,Introduction 简介
我们将要学习什么东东? 什么是机器学习? 有右边这样非常大的音频数据集,写程序来进行学习,然后可以输出音频“Hello” 有右边这样非常大的图片数据集,写程序来进行学习,然后可以识别左边这样图,识别为正确的物种。 机器学习 ≈ 寻找一个函数 Framework 框架 Image Recognition 图像识别 函数集(f 1 ,f 2 ,… )转载 2017-03-28 11:26:04 · 883 阅读 · 0 评论 -
机器学习入门系列02-Regression 回归:案例研究
为什么要先进行案例研究? 没有比较好的数学基础,直接接触深度学习会非常抽象,所以这里我们先通过一个预测 Pokemon Go 的 Combat Power (CP) 值的案例,打开深度学习的大门。 Regression (回归) 应用举例(预测Pokemon Go 进化后的战斗力) 比如估计一只神奇宝贝进化后的 CP 值(战斗力)。 下面是一只妙蛙种子,可以进化为妙蛙草,现转载 2017-03-28 11:47:48 · 673 阅读 · 0 评论 -
机器学习入门系列03,Error的来源:偏差和方差(bias和variance)
回顾 第二篇中神奇宝贝的例子: 可以看出越复杂的model 再测试集上的性能并不是越好 这篇要讨论的就是 error 来自什么地方?error主要的来源有两个,bias(偏差) 和 variance(方差) 估测 假设上图为神奇宝贝cp值的真正方程,当然这只有Niantic(制作《Pokemon Go》的游戏公司)知道。从训练集中可以找到真实方程f̂ 的近似转载 2017-03-29 15:42:41 · 4334 阅读 · 0 评论 -
机器学习入门系列04,Gradient Descent(梯度下降法)
什么是Gradient Descent(梯度下降法)? 在第二篇文章中有介绍到梯度下降法的做法,传送门:机器学习入门系列02,Regression 回归:案例研究 Review: 梯度下降法 在回归问题的第三步中,需要解决下面的最优化问题: θ∗=argminθL(θ) L:lossfunction(损失函数) θ:parameters(参数)转载 2017-03-29 15:46:58 · 784 阅读 · 0 评论 -
真正从零开始,TensorFlow详细安装入门图文教程
AI这个概念好像突然就火起来了,大比分战胜李世石的AlphaGo成功的吸引了大量的关注,但其实看看你的手机上的语音助手,相机上的人脸识别,今日头条上帮你自动筛选出来的新闻,还有各大音乐软件的歌曲“每日推荐”……形形色色的AI早已进入我们生活的方方面面。深刻的影响了着我们,可以说,这是一个AI的时代。 其实早在去年年底,谷歌就开源了其用来制作AlphaGo的深度学习系统Tensorflow,相信有转载 2017-09-27 10:06:21 · 7912 阅读 · 1 评论