终于可以生成IE的mht格式了

经过几个月的研究,终于破解了IE保存网页的mht格式。为此,我特别做了一个maxthon的插件,用该插件保存的网页是标准的mht格式,并且与微软IE生成的格式100%兼容,并且能保存IE不能保存的网页。需要的朋友下载试用:

http://forum.maxthon.com/forum/index.php?showtopic=17751 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
MATLAB中的MHT是指多假设跟踪(Multiple Hypothesis Tracking)算法。MHT是一种目标跟踪方法,它通过生成多个可能的目标轨迹假设,并使用测量数据来更新和验证这些假设。MHT算法在MATLAB中的实现可以参考《Introduction to Assignment Methods in Tracking Systems》一书中的介绍。该书提供了MHT算法的背景介绍以及2-D匹配方法(如GNN、KNN、JPDA)和S-D匹配方法的详细介绍[1]。 在MHT算法中,马氏距离(Mahalanobis distance)被用作测量残差协方差的度量。在MHT中,测量残差协方差(S)是用来衡量测量数据与目标轨迹之间的差异。马氏距离(d2)可以通过计算测量残差与其协方差的乘积来得到。在MHT中,通常使用Gating Threshold(G)来判断测量数据是否与目标轨迹匹配[2]。 在MATLAB中,可以使用assignauction函数来实现MHT算法。该函数使用拍卖算法(auction algorithm),它需要较少的操作,并且可以收敛到最优或次优解[3]。通过调用assignauction函数,可以实现目标的多假设跟踪,并根据测量数据进行目标的更新和验证。 总之,MATLAB中的MHT是一种多假设跟踪算法,用于目标跟踪。它可以通过生成多个可能的目标轨迹假设,并使用测量数据来更新和验证这些假设。MHT算法的实现可以参考《Introduction to Assignment Methods in Tracking Systems》一书中的介绍,并可以使用assignauction函数来实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zmxjh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值