题目描述
给定一棵 N N 个节点的树,每个点有一个权值,对于个询问 (u,v,k) ( u , v , k ) ,你需要回答 u u lastans l a s t a n s 和 v v 这两个节点间第小的点权。其中 lastans l a s t a n s 是上一个询问的答案,初始为 0 0 ,即第一个询问的u是明文。
输入输出格式
输入格式:
第一行两个整数。
第二行有 N N 个整数,其中第个整数表示点i的权值。
后面 N−1 N − 1 行每行两个整数 (x,y) ( x , y ) ,表示点 x x 到点有一条边。
最后M行每行两个整数 (u,v,k) ( u , v , k ) ,表示一组询问。
输出格式:
M M 行,表示每个询问的答案。
输入输出样例
输入样例#1:
8 5
105 2 9 3 8 5 7 7
1 2
1 3
1 4
3 5
3 6
3 7
4 8
2 5 1
0 5 2
10 5 3
11 5 4
110 8 2
输出样例#1:
2
8
9
105
7
HINT:
题解
已经有一个月没有写博客了,感觉从省选之后就有点水了。
对于这道题我们可以用一遍dfs求出所有节点到根节点的点权的值域,开一颗主席树维护一下,然后查询的时候只需要3个节点的主席树就可以了,代码略微复杂,不过很好写。
P.S. 可能题面和原题有点不一样,因为我是在luogu上做的。
Code
#include<bits/stdc++.h>
#define ls(k) a[k].ch[0]
#define rs(k) a[k].ch[1]
using namespace std;
int n,m,lastans=0,tot=0,cnt=0,head[100010],pos[100010];
int ct=0,root[100010];
struct point{
int val,id;
}fku[100010];
bool cmp1(const point &x,const point &y){
return x.val<y.val;
}
bool cmp2(const point &x,const point &y){
return x.id<y.id;
}
struct edge{
int v,next;
}e[200010];
void add(int u,int v){
e[++cnt]=(edge){v,head[u]};
head[u]=cnt;
}
namespace slpf{
using namespace std;
int dep[100010],siz[100010],fa[100010],top[100010],son[100010];
int dfs1(int u,int d){
dep[u]=d;siz[u]=1;
for(int i=head[u];i;i=e[i].next)
if(e[i].v!=fa[u]){
fa[e[i].v]=u;
int t=dfs1(e[i].v,d+1);
if(t>siz[son[u]])son[u]=e[i].v;
siz[u]+=t;
}
return siz[u];
}
void dfs2(int u,int tp){
top[u]=tp;
if(!son[u])return;
dfs2(son[u],tp);
for(int i=head[u];i;i=e[i].next)
if(e[i].v!=fa[u]&&e[i].v!=son[u])
dfs2(e[i].v,e[i].v);
}
int lca(int u,int v){
while(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]])swap(u,v);
u=fa[top[u]];
}
return dep[u]>dep[v]?v:u;
}
}
using namespace slpf;
struct node{
int ch[2],sz;
}a[2500010];
void insert(int p,int &u,int l,int r,int v){
a[++ct]=a[p];u=ct;
if(l==r){
a[u].sz++;
return;
}
int mid=(l+r)/2;
if(v<=mid)insert(ls(p),ls(u),l,mid,v);
else insert(rs(p),rs(u),mid+1,r,v);
a[u].sz=a[ls(u)].sz+a[rs(u)].sz;
}
int dfs(int u){
insert(root[fa[u]],root[u],1,100010,fku[u].val);
for(int i=head[u];i;i=e[i].next)
if(e[i].v!=fa[u])
dfs(e[i].v);
}
int query(int u,int v,int up,int upf,int l,int r,int k,bool tar){
if(l==r)return l;
int tmp,mid=(l+r)/2;
if(!tar)tmp=a[ls(u)].sz+a[ls(v)].sz-a[ls(up)].sz;
else tmp=a[ls(u)].sz+a[ls(v)].sz-a[ls(up)].sz-a[ls(upf)].sz;
if(tmp>=k)return query(ls(u),ls(v),ls(up),ls(upf),l,mid,k,tar);
else return query(rs(u),rs(v),rs(up),rs(upf),mid+1,r,k-tmp,tar);
}
int main()
{
int u,v,k;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&fku[i].val),fku[i].id=i;
sort(fku+1,fku+n+1,cmp1);
for(int i=1;i<=n;i++){
int now=fku[i].val;
fku[i].val=++tot;
pos[tot]=now;
while(fku[i+1].val==now)fku[++i].val=tot;
}
sort(fku+1,fku+n+1,cmp2);
for(int i=1;i<n;i++){
scanf("%d%d",&u,&v);
add(u,v);add(v,u);
}
dfs1(1,1);dfs2(1,1);dfs(1);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&u,&v,&k);
int up=lca(u,v);
if(up==1)lastans=pos[query(root[u],root[v],root[up],root[up],1,100010,k,0)];
else lastans=pos[query(root[u],root[v],root[up],root[fa[up]],1,100010,k,1)];
printf("%d\n",lastans);
}
return 0;
}