[Spoj10628] Count on a tree(主席树)

题目描述

给定一棵 N N 个节点的树,每个点有一个权值,对于M个询问 (u,v,k) ( u , v , k ) ,你需要回答 u u xor lastans l a s t a n s v v 这两个节点间第K小的点权。其中 lastans l a s t a n s 是上一个询问的答案,初始为 0 0 ,即第一个询问的u是明文。

输入输出格式

输入格式:

第一行两个整数N,M

第二行有 N N 个整数,其中第i个整数表示点i的权值。

后面 N1 N − 1 行每行两个整数 (x,y) ( x , y ) ,表示点 x x 到点y有一条边。

最后M行每行两个整数 (u,v,k) ( u , v , k ) ,表示一组询问。

输出格式:

M M 行,表示每个询问的答案。

输入输出样例

输入样例#1:

8 5
105 2 9 3 8 5 7 7
1 2
1 3
1 4
3 5
3 6
3 7
4 8
2 5 1
0 5 2
10 5 3
11 5 4
110 8 2

输出样例#1:

2
8
9
105
7

HINT:

N,M100000

题解

已经有一个月没有写博客了,感觉从省选之后就有点水了。
对于这道题我们可以用一遍dfs求出所有节点到根节点的点权的值域,开一颗主席树维护一下,然后查询的时候只需要3个节点的主席树就可以了,代码略微复杂,不过很好写。
P.S. 可能题面和原题有点不一样,因为我是在luogu上做的。

Code

#include<bits/stdc++.h>
#define ls(k) a[k].ch[0]
#define rs(k) a[k].ch[1]
using namespace std;

int n,m,lastans=0,tot=0,cnt=0,head[100010],pos[100010];
int ct=0,root[100010];

struct point{
    int val,id;
}fku[100010];
bool cmp1(const point &x,const point &y){
    return x.val<y.val;
}
bool cmp2(const point &x,const point &y){
    return x.id<y.id;
}

struct edge{
    int v,next;
}e[200010];
void add(int u,int v){
    e[++cnt]=(edge){v,head[u]};
    head[u]=cnt;
}

namespace slpf{
    using namespace std;
    int dep[100010],siz[100010],fa[100010],top[100010],son[100010];
    int dfs1(int u,int d){
        dep[u]=d;siz[u]=1;
        for(int i=head[u];i;i=e[i].next)
          if(e[i].v!=fa[u]){
            fa[e[i].v]=u;
            int t=dfs1(e[i].v,d+1);
            if(t>siz[son[u]])son[u]=e[i].v;
            siz[u]+=t;
          }
        return siz[u];
    }
    void dfs2(int u,int tp){
        top[u]=tp;
        if(!son[u])return;
        dfs2(son[u],tp);
        for(int i=head[u];i;i=e[i].next)
          if(e[i].v!=fa[u]&&e[i].v!=son[u])
            dfs2(e[i].v,e[i].v);
    }
    int lca(int u,int v){
        while(top[u]!=top[v]){
            if(dep[top[u]]<dep[top[v]])swap(u,v);
            u=fa[top[u]];
        }
        return dep[u]>dep[v]?v:u;
    }
}
using namespace slpf;

struct node{
    int ch[2],sz;
}a[2500010];

void insert(int p,int &u,int l,int r,int v){
    a[++ct]=a[p];u=ct;
    if(l==r){
        a[u].sz++;
        return;
    }
    int mid=(l+r)/2;
    if(v<=mid)insert(ls(p),ls(u),l,mid,v);
    else insert(rs(p),rs(u),mid+1,r,v);
    a[u].sz=a[ls(u)].sz+a[rs(u)].sz;
}

int dfs(int u){
    insert(root[fa[u]],root[u],1,100010,fku[u].val);
    for(int i=head[u];i;i=e[i].next)
      if(e[i].v!=fa[u])
        dfs(e[i].v);
}

int query(int u,int v,int up,int upf,int l,int r,int k,bool tar){
    if(l==r)return l;
    int tmp,mid=(l+r)/2;
    if(!tar)tmp=a[ls(u)].sz+a[ls(v)].sz-a[ls(up)].sz;
    else tmp=a[ls(u)].sz+a[ls(v)].sz-a[ls(up)].sz-a[ls(upf)].sz;
    if(tmp>=k)return query(ls(u),ls(v),ls(up),ls(upf),l,mid,k,tar);
    else return query(rs(u),rs(v),rs(up),rs(upf),mid+1,r,k-tmp,tar);
}

int main()
{
    int u,v,k;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)scanf("%d",&fku[i].val),fku[i].id=i;

    sort(fku+1,fku+n+1,cmp1);
    for(int i=1;i<=n;i++){
        int now=fku[i].val;
        fku[i].val=++tot;
        pos[tot]=now;
        while(fku[i+1].val==now)fku[++i].val=tot;
    }
    sort(fku+1,fku+n+1,cmp2);

    for(int i=1;i<n;i++){
        scanf("%d%d",&u,&v);
        add(u,v);add(v,u);
    }

    dfs1(1,1);dfs2(1,1);dfs(1);

    for(int i=1;i<=m;i++){
        scanf("%d%d%d",&u,&v,&k);
        int up=lca(u,v);
        if(up==1)lastans=pos[query(root[u],root[v],root[up],root[up],1,100010,k,0)];
        else lastans=pos[query(root[u],root[v],root[up],root[fa[up]],1,100010,k,1)];
        printf("%d\n",lastans);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值