欧拉定理—欧拉函数

欧拉函数

对于正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目,记作φ(n)(φ(1)=1).
如果a,b 是质数,φ(ab)=ab(1−1/a)(1−1/b)=a(1−1/a)b(1−1/b)=φ(a)φ(b);
求一个数的欧拉函数模板:

#include<iostream>
using namespace std;
int main()
{
    int t;
    cin >> t;
    while(t--)
    {
        int a;
        cin >> a;
        int res=a;
        for(int i=2;i<=a/i;i++)
        {
            if(a%i==0)
            {
                res=res/i*(i-1);
                while(a%i==0)
                {
                    a=a/i;
                }
            }
        }
        if(a>1)
        {
            res=res/a*(a-1);
        }
        cout << res << endl;
    }
    return 0;
}

求1~n中每一个数的欧拉函数:

#include <iostream>
using namespace std;
const int N=1001001;
bool st[N];
int p[N],phi[N];
int main()
{
    int n;
    cin >> n;
    int cnt=0;
    phi[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!st[i]) 
        {
            p[cnt++]=i;
            phi[i]=i-1;
        }
        for(int j=0;p[j]<=n/i;j++)
        {
            st[i*p[j]]=true;
            //如果i能整除p[j]说明,i*p[j]的所有因子和i的相同,只需再乘个p[j]即可;
            if(i%p[j]==0) 
            {
                phi[i*p[j]]=phi[i]*p[j];
                break;
            }
            phi[i*p[j]]=phi[i]*(p[j]-1);
        }
    }
    long long sum=0;
    for(int i=1;i<=n;i++)
    {
        sum+=phi[i];
    }
    cout << sum << endl;
    return 0;
}

欧拉定理

若a和p互质 a^b(b为p的欧拉函数)≡1(mod p);
当p为质数时,就变成了费马小定理;
φ§是这等式成立的一组解,但最小的解一定是φ§的约数(结论);
当一个式子如上式,a和p不互质的话则无解;
在这里插入图片描述

费马小定理

假如p是质数,且gcd(a,p)≡1(mod p),那么a的(p-1)次方除以p的余数恒等于1;
a^(p-1)≡1(mod p);
两边同除以p得到 a^(p-2)≡1/a(mod p);
所以 inv(a)=a^(p-2)(mod p);

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值