1. (程序题, 40分) 锯齿矩阵是指每一行包含的元素个数不相同的矩阵,比如:
3 5 2 6 1
2 3 4
1 6 2 7
读入若干对整数(x,y) ,表示在第x行的末尾加上一个元素y。输出最终的锯齿数组。初始时矩阵为空。
Input
多组输入(不超过100组)
第一行输入两个整数n,m(1≤n,m≤10000),其中n表示锯齿数组的行数,m表示插入的元素总数。
接下来一共m行,每行两个整数x,y(1≤x≤n,0≤y≤10000) ,表示在第x行的末尾插入一个元素y。
Output
对于每组数据,输出n行。
每行若干个用空格分隔的整数(末尾没有空格)。如果某行没有任何元素,则输出一个空行。
Sample Input
3 12
1 3
2 2
2 3
2 4
3 1
3 6
1 5
1 2
1 6
3 2
3 7
1 1
Sample Output
3 5 2 6 1
2 3 4
1 6 2 7
#include <iostream> #include <vector> using namespace std; int main() { vector<int>vi[100]; int n,m,i,j,x,y; while(cin>>n>>m){ for(i=1;i<=m;i++){ cin>>x>>y; for(j=1;j<=n;j++) { if(x==j)vi[j].insert(vi[j].end(),y); } } vector<int>::iterator it; for(i=1;i<=n;i++) { if(vi[i].size()==0) cout<<endl; for(it=vi[i].begin();it<vi[i].end();it++) { if(it<vi[i].end()-1)cout<<*it<<" "; if(it==vi[i].end()-1)cout<<*it<<endl; } } } return 0; }
2. (程序题, 30分) 明明想在学校中请一些同学一起做一项问卷调查,为了实验的客观性,他先用计算机生成了N个1到1000之间的随机整数(N <= 100),对于其中重复的数字,只保留一个,把其余相同的数去掉,不同的数对应着不同的学生的学号。然后再把这些数从小到大排序,按照排好的顺序去找同学做调查。请你协助明明完成“去重”与“排序”的工作。
Input
输入数据有多组
每组有2行,第1行为1个正整数,表示所生成的随机数的个数:N
第2行有N个用空格隔开的正整数,为所产生的随机数。
Output
每组输出也是2行,第1行为1个正整数M,表示不相同的随机数的个数。第2行为M个用空格隔开的正整数,为从小到大排好序的不相同的随机数。
Sample Input
10
20 40 32 67 40 20 89 300 400 15
Sample Output
8
15 20 32 40 67 89 300 400
#include <iostream> #include <set> #include <stdio.h> using namespace std; int main() { int n,x,i; set<int>vi; while(cin>>n) { for(i=1;i<=n;i++) { scanf("%d",&x); vi.insert(x); } set<int>::iterator it; cout<<vi.size()<<endl; for(it=vi.begin();it!=vi.end();it++) { cout<<*it<<" "; } } return 0; }
3. (程序题, 30分)给出两个数集,它们的相似程度定义为Nc/Nt*100%。其中,Nc表示两个数集的交集中元素的个数,而Nt表示两个数集的并集中元素的个数。请计算任意两个给出数集的相似程度。
Input
输入第一行给出一个正整数N(N<=50),是集合的个数。随后N行,每行对应一个集合。每个集合首先给出一个正整数M(M<=5000),是集合中元素的个数;然后跟M个[0, 3000]区间内的整数。
之后一行给出一个正整数K(K<=800),随后K行,每行对应一对需要计算相似度的集合的编号(集合从1到N编号)。数字间以空格分隔。
Output
输出共K行,每行一个保留2位小数的实数,表示给定两个集合的相似度值。
Sample Input
3
3 99 87 101
4 87 101 5 87
7 99 101 18 5 135 18 99
2
1 2
1 3
Sample Output
50.00%
33.33%
#include <iostream> #include <set> #include <stdio.h> #include <vector> using namespace std; int main() { int n,i,j,x,y,n2; cin>>n; set<int>a[52]; for(i=1;i<=n;i++) { cin>>y; for(j=1;j<=y;j++) { cin>>x; a[i].insert(x); } } cin>>n2; while(n2--){ int t,w,nc=0,nt=0; set<int>::iterator it1; set<int>::iterator it2; cin>>t>>w; for(it1=a[t].begin();it1!=a[t].end();it1++) { for(it2=a[w].begin();it2!=a[w].end();it2++) { if(*it1==*it2) { nc++; break; } } } nt=a[t].size()+a[w].size()-nc; double ans; ans=(100.00*nc)/nt; printf("%.2lf%%\n",ans); } return 0; } /* 3 3 99 87 101 4 87 101 5 87 7 99 101 18 5 135 18 99 */