正则表达式匹配IP的表达式

原文:https://www.jb51.net/article/101221.htm

这里给大家详细讲解一下一个匹配IP地址的正则表达式,

  有关正则方面的知识,会在详细的讲解中提到。

  在讲解之前,我先给大家介绍一下,ip地址的生成规则。

  IP地址,是由32位数字二进制转为四个十进制的字符串组成。

  怎么转化?下面讲解:

      二进制:11111111111111111111111111111111

      分为四部分:11111111.11111111.11111111.11111111

      转化:2^7+2^6+2^5+2^4+2^3+2^2+2^1+2^0=255

      转为十进制范围:0~255.0~255.0~255.0~255

      这就是IP地址的范围。

      根据这个生成IP的规则和范围,我们可以用正则表达式来匹配出IP地址,但怎么匹配呢?各人有各人的方法,这里我讲解一下我的思路。

      根据IP地址的字符串规律,我把匹配IP地址的表达式分为两部分来考虑。

      第一部分:匹配3个0~255.(注意后面的一个点)

      第二部分:匹配最后的数字0~255

      也就是说,先匹配出 0~255.(注意后面的一个点) 这个字符串,然后重复匹配3次,然后再匹配最后的数字部分0~255。这就是我匹配IP地址的思路。

       首先,我要提一下,正则是没有办法做数字运算的,所以,我们无法用数字运算的方式筛选出IP的数字范围。既然没法用数字运算的方式筛选出IP的数字范围,那么我们应该用什么其他方式来筛选这个数字范围呢?我的思路是分组讨论,然后再把这些分组合并起来组成IP的数字范围。

       ①、假设IP的数字是百位数,那么根据IP的数字范围,我们可以得出下面几种情况。假设第一个数字为1,那么这个数字的范围就为1[0-9][0-9]。这个应该不难理解,就不解释。

      ②、假设第一个数字为2,那么根据IP数字的范围规则,这里又要分为两种情况,为什么?你想想,最大数字是255,当十位数为5时,个位数最大只能为5是吧?而当十位数为0到4时,个位数可以是任意数字对吧?

      所以,这里的两种情况分别为:

           A、2[0-4][0-9]

           B、25[0-5]

       ③、分析完了百位数的情况,接下来就是十位数的情况了,假如是十位数,那么十位数的前面第一个数不能为零是吧?

所以十位数的情况可以是:[1-9][0-9]

       ④、剩下的就是个位数的情况了,个位数的情况,大家应该很容易得出结论,就是:[0-9]。

       四种情况分析下来,我们得出了IP数字的范围分组为:

        1[0-9][0-9]

        2[0-4][0-9]

        25[0-5]

        [1-9][0-9]

        [0-9]

       怎么把上面的分组用正则表达式表示出来呢?很简单,用正则的或符号|和分组符号()就可以了,所以上面的分组正则表达式为:

(1[0-9][0-9])|(2[0-4][0-9])|(25[0-5])|([1-9][0-9])|([0-9])

 

写到这里,数字的匹配范围正则表达式已经写好了,那么根据我前面的思路: 第一部分:匹配3个0~255.(注意后面的一个点)

         第二部分:匹配最后的数字0~255

        我们来匹配IP地址的第一部分,正则表达式如下: 

(1[0-9][0-9]\.)|(2[0-4][0-9]\.)|(25[0-5]\.)|([1-9][0-9]\.)|([0-9]\.)

 我在每个数字的后面加了一个点就是匹配出0~255.(注意后面的一个点)

         那么怎么重复匹配三次呢?很简单,我们只要把这五个分组当成整体,再重复匹配三次就行了,正则表达式如下: 

((1[0-9][0-9]\.)|(2[0-4][0-9]\.)|(25[0-5]\.)|([1-9][0-9]\.)|([0-9])\.)){3}

第一部分已经匹配出来了,接下来就是拼接上第二部分的数字了,数字部分上面已经写得很清楚了,就不再解释了,下面是完整的正则表达式:

((1[0-9][0-9]\.)|(2[0-4][0-9]\.)|(25[0-5]\.)|([1-9][0-9]\.)|([0-9]\.)){3}((1[0-9][0-9])|(2[0-4][0-9])|(25[0-5])|([1-9][0-9])|([0-9]))

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页