堆排序算法介绍
堆是一种重要的数据结构,为一棵完全二叉树, 底层如果用数组存储数据的话,假设某个元素为序号为i(Java数组从0开始,i为0到n-1),如果它有左子树,那么左子树的位置是2i+1,如果有右子树,右子树的位置是2i+2,如果有父节点,父节点的位置是(n-1)/2取整。分为最大堆和最小堆,最大堆的任意子树根节点不小于任意子结点,最小堆的根节点不大于任意子结点。所谓堆排序就是利用堆这种数据结构来对数组排序,我们使用的是最大堆。处理的思想和冒泡排序,选择排序非常的类似,一层层封顶,只是最大元素的选取使用了最大堆。最大堆的最大元素一定在第0位置,构建好堆之后,交换0位置元素与顶即可。堆排序为原位排序(空间小), 且最坏运行时间是O(nlgn),是渐进最优的比较排序算法。
堆排序算法Java实现
堆排序的大概步骤如下:
- 构建最大堆。
- 选择顶,并与第0位置元素交换
- 由于步骤2的的交换可能破环了最大堆的性质,第0不再是最大元素,需要调用maxHeap调整堆(沉降法),如果需要重复步骤2
堆排序中最重要的算法就是maxHeap,该函数假设一个元素的两个子节点都满足最大堆的性质(左右子树都是最大堆),只有跟元素可能违反最大堆性质,那么把该元素以及左右子节点的最大元素找出来,如果该元素已经最大,那么整棵树都是最大堆,程序退出,否则交换跟元素与最大元素的位置,继续调用maxHeap原最大元素所在的子树。该算法是分治法的典型应用。具体代码如下:
package com.company.Sort; /** * Created by zj on 2017/3/27 0027. */ public class HeapSort { public static void heapSort(int[] arr) { if (arr == null || arr.length <= 1) {//arr == null必须写在前边 防止空指针 判空 return; } buildMaxHeap(arr);//构建最大堆 for (int i = arr.length - 1; i>= 1; i--) {//将堆顶元素与堆尾元素交换 堆大小减1 沉降法调整最大堆 直到堆里只剩一个元素 ArrayUtils.exchangeElement(arr, 0, i); maxHeap(arr, i, 0); } } public static void buildMaxHeap(int[] arr) { if (arr == null || arr.length <= 1) {//arr == null必须写在前边 防止空指针 判空 return; } int half = arr.length / 2; for (int i = half; i >= 0; i--) {//对非叶子结点进行调整最大堆 从右往左 从下往上 开始调整 直到堆顶元素 maxHeap(arr, arr.length, i); } } public static void maxHeap(int[] arr, int heapSize, int index) { int left = 2 * index + 1;//某节点的左节点 int right = 2 * index + 2;//某节点的右节点 int largest = index;//记录最大的节点索引 if (left < heapSize && arr[left] > arr[index]) {//左子节点大于根节点 将左节点作为最大节点 largest = left; } if (right < heapSize && arr[right] > arr[index]) {//右子节点大于根节点 将右节点作为最大节点 largest = right; } if (index != largest) {//如果最大节点不是原来赋予的根节点了 就交换最大节点索引与与根节点索引处的元素 ArrayUtils.exchangeElement(arr, index, largest); } maxHeap(arr, arr.length, largest);//交换后可能违背最大堆原则 进行沉降法调整交换索引处的的子堆 } }