堆排序 java实现

15 篇文章 0 订阅

堆排序算法介绍

堆是一种重要的数据结构,为一棵完全二叉树, 底层如果用数组存储数据的话,假设某个元素为序号为i(Java数组从0开始,i为0到n-1),如果它有左子树,那么左子树的位置是2i+1,如果有右子树,右子树的位置是2i+2,如果有父节点,父节点的位置是(n-1)/2取整分为最大堆和最小堆,最大堆的任意子树根节点不小于任意子结点,最小堆的根节点不大于任意子结点。所谓堆排序就是利用堆这种数据结构来对数组排序,我们使用的是最大堆。处理的思想和冒泡排序,选择排序非常的类似,一层层封顶,只是最大元素的选取使用了最大堆。最大堆的最大元素一定在第0位置,构建好堆之后,交换0位置元素与顶即可。堆排序为原位排序(空间小), 且最坏运行时间是O(nlgn),是渐进最优的比较排序算法

堆排序算法Java实现

堆排序的大概步骤如下:

  1. 构建最大堆。
  2. 选择顶,并与第0位置元素交换
  3. 由于步骤2的的交换可能破环了最大堆的性质,第0不再是最大元素,需要调用maxHeap调整堆(沉降法),如果需要重复步骤2

堆排序中最重要的算法就是maxHeap,该函数假设一个元素的两个子节点都满足最大堆的性质(左右子树都是最大堆),只有跟元素可能违反最大堆性质,那么把该元素以及左右子节点的最大元素找出来,如果该元素已经最大,那么整棵树都是最大堆,程序退出,否则交换跟元素与最大元素的位置,继续调用maxHeap原最大元素所在的子树。该算法是分治法的典型应用。具体代码如下:

package com.company.Sort;

/**
 * Created by zj on 2017/3/27 0027.
 */
public class HeapSort {
    public static void heapSort(int[] arr) {
        if (arr == null || arr.length <= 1) {//arr == null必须写在前边 防止空指针 判空
            return;
        }
        buildMaxHeap(arr);//构建最大堆

        for (int i = arr.length - 1; i>= 1; i--) {//将堆顶元素与堆尾元素交换 堆大小减1 沉降法调整最大堆 直到堆里只剩一个元素
            ArrayUtils.exchangeElement(arr, 0, i);
            maxHeap(arr, i, 0);
        }

    }

    public static void buildMaxHeap(int[] arr) {
        if (arr == null || arr.length <= 1) {//arr == null必须写在前边 防止空指针 判空
            return;
        }
        int half = arr.length / 2;
        for (int i = half; i >= 0; i--) {//对非叶子结点进行调整最大堆 从右往左 从下往上 开始调整 直到堆顶元素
            maxHeap(arr, arr.length, i);
        }
    }

    public static void maxHeap(int[] arr, int heapSize, int index) {
        int left = 2 * index + 1;//某节点的左节点
        int right = 2 * index + 2;//某节点的右节点
        int largest = index;//记录最大的节点索引
        if (left < heapSize && arr[left] > arr[index]) {//左子节点大于根节点 将左节点作为最大节点
            largest = left;
        }
        if (right < heapSize && arr[right] > arr[index]) {//右子节点大于根节点 将右节点作为最大节点
            largest = right;
        }
        if (index != largest) {//如果最大节点不是原来赋予的根节点了 就交换最大节点索引与与根节点索引处的元素
            ArrayUtils.exchangeElement(arr, index, largest);
        }
        maxHeap(arr, arr.length, largest);//交换后可能违背最大堆原则 进行沉降法调整交换索引处的的子堆
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值