2020-10-30

本文介绍了使用辗转相除法(欧几里得算法)求解两个整数的最大公约数,并指出最大公约数与最小公倍数之间的关系。通过示例代码展示了如何计算最大公约数,进而推导出最小公倍数。理解这一算法对于解决数论问题和编程实践具有重要意义。
摘要由CSDN通过智能技术生成

辗转相除法求最大公约数

int Euclidean(int a,int b)
{
    int min=a<b?a:b;
    int max=a>b?a:b;
    int n=-1;
    while(n!=0)
    {
        n=max%min;
        max=min;
        min=n;
    }
    return max;
}

求出最大公约数就能求出最小公倍数
两个数的乘积等于这两个数的最大公约数与最小公倍数的乘积。假设有两个数是a、b,它们的最大公约数是p,最小公倍数是q。那么存在这样的关系式:ab=pq。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值