【面试】【二维平面上判断点是否在三角形内】

二维平面上判断点是否在三角形内

算法1
在这里插入图片描述

利用面积法,如上图所示,如果点P在三角形ABC的内部,则三个小三角形PAB, PBC, PAC的面积之和 = ABC的面积,反之则不相等。
已知三角形的三个顶点坐标求其面积,可以根据向量的叉乘,参考here
该算法详见后面代码中的函数:IsPointInTriangle1

算法2
首先看一下这个问题,如何判断某两个点在某条直线的同一侧(代码中函数:IsPointAtSameSideOfLine)?
在这里插入图片描述

根据向量的叉乘以及右手螺旋定则,AB^AM (表示叉乘,这里向量省略了字母上面的箭头符号)的方向为向外指出屏幕,ABAN也是向外指出屏幕,但AB^AO的方向是向内指向屏幕,因此M,N在直线AB的同侧,M ,O在直线AB的两侧。实际计算时,只需要考虑叉积的数值正负
假设以上各点坐标为A(0,0), B(4,0), M(1,2), N(3,4), O(3,-4), 则:
AB^AM = (4,0)^(1,2) = 42 - 01 = 8
AB^AN = (4,0)^(3,4) = 44 – 03 = 16
AB^AO = (4,0)^(3,-4) = 4*-4 – 0*3 = –16
由上面的数值可知,可以根据数值的正负判断叉乘后向量的方向。即,如果叉积AB^AM 和 ABAN的结果同号,那么M,N两点就在直线的同侧,否则不在同一侧。特殊地,如果点M在直线AB上,则ABAM的值为0。(如果是在三维坐标系中,求出的叉积是一个向量,可以根据两个向量的点积结果正负来判断两个向量的是否指向同一侧) 本文地址

以上的问题解决了,就很容易的用来判断某个点是否在三角形内,如果P在三角形ABC内部,则满足以下三个条件:P,A在BC的同侧、P,B在AC的同侧、PC在AB的同侧。某一个不满足则表示P不在三角形内部。
该算法详见后面代码中的函数:IsPointInTriangle2

算法3
该方法也用到了向量。对于三角形ABC和一点P,可以有如下的向量表示:
image
p点在三角形内部的充分必要条件是:1 >= u >= 0, 1 >= v >= 0, u+v <= 1。
已知A,B,C,P四个点的坐标,可以求出u,v,把上面的式子分别点乘向量AC和向量AB
解方程解出u,v后只需要看他们是否满足“1 >= u >= 0, 1 >= v >= 0, u+v <= 1”,如满足,则,p 在三角形内。
(u = 0时,p在AB上, v = 0时,p在AC上,两者均为0时,p和A重合)
该算法详见后面代码中的函数:IsPointInTriangle3

算法4

该算法和算法2类似,可以看作是对算法2的简化,也是用到向量的叉乘。假设三角形的三个点按照顺时针(或者逆时针)顺序是A,B,C。对于某一点P,求出三个向量PA,PB,PC, 然后计算以下三个叉乘(^表示叉乘符号):

t1 = PA^PB,

t2 = PB^PC,

t3 = PC^PA,

如果t1,t2,t3同号(同正或同负),那么P在三角形内部,否则在外部。

该算法详见后面代码中的函数:IsPointInTriangle4

经过测试,算法4最快,算法3次之,接着算法2,算法1最慢。直观的从计算量上来看,也是算法4的计算量最少。

以下是代码,定义了两个类:二维向量类 和 三角形类

//类定义:二维向量
class Vector2d
{
   
public:
    double x_;
    double y_;
 
public:
    Vector2d(double x, double y):x_(x), y_(y){
   }
    Vector2d():x_(0), y_(0){
   }
 
    //二维向量叉乘, 叉乘的结果其实是向量,方向垂直于两个向量组成的平面,这里我们只需要其大小和方向
    double CrossProduct(const Vector2d vec)
    {
   
        return x_*vec.y_ - y_*vec.x_;
    }
 
    //二维向量点积
    double DotProduct(const Vector2d vec)
    {
   
        return x_ * vec.x_ + y_ * vec.<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值