1.1 实验介绍
1.1.1 实验背景
ChatGLM3-6B 是一个基于 GPT-3 模型的聊天机器人,具有强大的自然语言处理能力和智能对话能力。它可以理解人类自然语言输入,并生成自然流畅的回复,使得用户可以与机器人进行自然、流畅的对话。
1.1.2 实验原理
ChatGLM3-6B 是一个基于 GPT-3 模型的自然语言生成模型,拥有 1750 亿个参数,是目前公开发布的最大的 AI 语言模型之一。它可以用于生成各种类型的自然语言文本,例如聊天对话、新闻文章、诗歌等等。ChatGLM3-68 的训练数据来自于互联网上的大量文本,它可以自动学习语言的规律和模式,并生成具有逻辑性和连贯性的文本。
1.1.3 实验目的
将 ChatGLM3-6B 模型部署到服务器上,使得用户可以通过网络访问该模型,并进行对话。通过实验可以了解模型的部署过程,掌握如何使用客户端,可视化,和 api部署方式。
1.2 ChatGLM3模型服务侧部署(需要 GPU)(Windows
1.2.1 安装 Anaconda
下载链接:https://repo.anaconda.com/archive/
1.2.2 创建虚拟环境
打开Anaconda PowerShell Prompt
创建虚拟环境conda create -n student python==3.11如有提示 Proceed([y]/n)?,全部输入y
激活虚拟环境 conda activate student,如需关闭虚拟环境,conda deactivate
设置阿里源
https://github.com/THUDM/ChatGLM3
pytorch官网地址:PyTorch
安装pytorch
pip3 install torch torchvision torchaudio
cd d:
cd D:\AI\ChatGLM3-main
pip install -r .\requirements.txt
环境就下载完成了,准备做实验
3.做实验
进入到项目文件夹:cd D:\AI\第四章开发私人知识库_chatGLM3
修改main.py文件当中:
改公网地址(main.py36行) OPENAI_BASE_URL = "http://1.95.153.203:8000/v1/"
改EMBEDDING路径(main.py62行) embeddings = HuggingFaceEmbeddings(model_name="D:/AI/chapter2/ChatGLM3-main/EMBEDDING")
修改完之后运行代码:
streamlit run .\main.py
可能会报错,缺什么装什么
pip install python-dotenv
pip install pdfplumber
pip install -U langchain-community
pip install faiss-cpu
再次运行:streamlit run .\main.py
随便写一个email:123@qq.com,进入到网页中
上传pdf,即可学习文件,进行问答
课后作业:根据自己的姓名写一个pdf文件,并进行问答,如图所示