-
题目描述:
-
给定一个由N个整数元素组成的数组arr,数组中有正数也有负数,这个数组不是一般的数组,其首尾是相连的。数组中一个或多个连续元素可以组成一个子数组,其中存在这样的子数组arr[i],…arr[n-1],arr[0],…,arr[j],现在请你这个ACM_Lover用一个最高效的方法帮忙找出所有连续子数组和的最大值(如果数组中的元素全部为负数,则最大和为0,即一个也没有选)。
-
输入:
-
输入包含多个测试用例,每个测试用例共有两行,第一行是一个整数n(1=<n<=100000),表示数组的长度,第二行依次输入n个整数(整数绝对值不大于1000)。
-
输出:
-
对于每个测试用例,请输出子数组和的最大值。
-
样例输入:
-
6 1 -2 3 5 -1 2 5 6 -1 5 4 -7
-
样例输出:
-
10 14
推荐指数:※※
求子数组的最大和是常见题。
这里考虑首尾相连的情况,那么就可以分为两种情况1.最大和就在原数组当中。2.最大和在收尾相连的数组当中,这种情况其实可以转化为求原数组子数组的最小和的情况。
#include<iostream> #include<string> using namespace std; #define max(a,b) ((a)>(b))?(a):(b) #define min(a,b) ((a)<(b))?(a):(b) #define MAX_INT 2000 int max_sub_arr(int *arr,int arr_length){ int i,tmp,sum,min_sum,min_tmp,allsum=0; sum=0;tmp=0; min_sum=MAX_INT,min_tmp=MAX_INT; for(i=0;i<arr_length;i++){ tmp=max(tmp,sum);//求出数组中的连续最大和 sum+=arr[i]; sum=sum>0?sum:0; min_tmp=min(min_tmp,min_sum);//求出数组中的连续最小和 min_sum+=arr[i]; min_sum=min_sum<0?min_sum:0; allsum+=arr[i];//数组的和 } sum=max(tmp,sum); min_sum=min(min_tmp,min_sum); return max(sum,allsum-min_sum);//考虑首尾相连,就是普通的子数组最大和 与 数组和减去子数组最小和的两种情况 } int main() { int n,i; while(cin>>n&&n>0){ int *arr=new int[n]; for(i=0;i<n;i++) cin>>arr[i]; cout<<max_sub_arr(arr,n)<<endl; } return 0; }