flink实现流处理和批处理

1、流处理和批处理介绍

                                 1.流处理系统

流处理系统,其节点间数据传输的标准模型是:当一条数据被处理完成后,序列化到缓存中,然后立刻通过网络传输到下一个节点,由下一个节点继续处理。

                                 2.批处理系统

批处理系统,其节点间数据传输的标准模型是:当一条数据被处理完成后,序列化到缓存中,并不会立刻通过网络传输到下一个节点,当缓存写满,就持久化到本地硬盘上,当所有数据都被处理完成后,才开始将处理后的数据通过网络传输到下一个节点。

                                 3.flink的流处理和批处理

Flink的执行引擎采用了一种十分灵活的方式,同时支持了这两种数据传输模型:

• Flink以固定的缓存块为单位进行网络数据传输,用户可以通过设置缓存块超时值指定缓存块的传输时机。如果缓存块的超时值为0,则Flink的数据传输方式类似上文所提到流处理系统的标准模型,此时系统可以获得最低的处理延迟。
• 如果缓存块的超时值为无限大,则Flink的数据传输方式类似上文所提到批处理系统的标准模型,此时系统可以获得最高的吞吐量。
• 同时缓存块的超时值也可以设置为0到无限大之间的任意值。缓存块的超时阈值越小,则Flink流处理执行引擎的数据处理延迟越低,但吞吐量也会降低,反之亦然。通过调整缓存块的超时阈值,用户可根据需求灵活地权衡系统延迟和吞吐量 。

2、代码示例

批处理:

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
 
/**
 * 批处理
 */
public class WordCount {
 
    public static void main(String[] args) throws Exception {
        String filePath = "E:\\bigData\\hadoop\\hdfs\\src\\main\\resources\\file";
        //创建执行环境
        ExecutionEnvironment environment = ExecutionEnvironment.getExecutionEnvironment();
        //读取文件
        DataSource<String> inSource = environment.readTextFile(filePath);
        //对数据集进行处理,按空格分词展开,转换成(word,1)二元组进行统计
        DataSet<Tuple2<String,Integer>> resultSet = inSource.flatMap(new MyFlatMapper())
                .groupBy(0)     //按照第一个位置的word分组
                .sum(1);           //将第二个位置上的数据进行求和
 
        resultSet.print();
    }
 
 
 
    //自定义类,实现FlatMapFunction接口
    public static class MyFlatMapper implements FlatMapFunction<String, Tuple2<String, Integer>>{
 
        @Override
        public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
 
            //按空格分词
            String[] words = value.split(" ");
            //遍历所有word,包成二元组输出
            for (String word: words) {
              out.collect(new Tuple2<>(word,1));
            }
        }
    }
 
}

流处理:

package Flink;
 
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
 
/**
 * @author : shujuelin
 * @date : 9:55 2020/12/12
 */
public class StreamWordCount {
 
    public static void main(String[] args) throws Exception {
        String filePath = "E:\\bigData\\hadoop\\hdfs\\src\\main\\resources\\file";
        //创建流处理环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        /*//读取文件
        DataStreamSource<String> streamSource = env.readTextFile(filePath);*/
 
        //采用nc  实际中不能再代码里显示主机ip和端口号。用parameter tool从程序启类中提取参数
        ParameterTool tool = ParameterTool.fromArgs(args);
        String host = tool.get("host");
        int port = tool.getInt("port");
 
        //socket文本流读取数据
        DataStreamSource<String> streamSource = env.socketTextStream(host, port);
 
        //基于数据流进行计算
        DataStream<Tuple2<String, Integer>> resultStream = streamSource.flatMap(new WordCount.MyFlatMapper())
                .keyBy(0)
                .sum(1);
 
        resultStream.print();
        //执行任务
        env.execute();
    }
 
}
                               4.flink的流处理和批处理代码的区别

流处理Streaming

• StreamExecutionEnvironment
• DataStreaming

批处理Batch

• ExecutionEnvironment
• DataSet

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bst@微胖子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值