问题描述:
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例:在8X8格的国际象棋棋盘上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
问题求解:
采用回溯算法,即从第一行开始,依次探查可以放置皇后的位置,若找到,则放置皇后,开始探查下一行;若该行没有位置可以放置皇后,则回溯至上一行,清除该行放置皇后的信息,从该行原本放置皇后的下一个位置开始探查可以放置皇后的位置。求所有解时,每找到一组解,就清除这一组解最后一个皇后的位置信息,开始探查该行另外一个可以放置皇后的位置,依次回溯求解。
public class ThreeQueen {
/**
* @param args
*/
private int[] a=new int[8]; //存储弟i行皇后位于第a[i]列
public static void main(String[] args) {
// TODO Auto-generated method stub
ThreeQueen queen=new ThreeQueen();
queen.Search(0);
}
public void Search(int m){
if(m>=8){
System.out.println(“八皇后的一组解为:”);
printResult();
}
else{
for(int i=0;i<8;i++){
if(CanPlace(m,i)){
a[m]=i;
Search(m+1);
a[m]=-10;
}
}
}
}
private boolean CanPlace(int k,int j) {
// TODO Auto-generated method stub
for(int i=1;i<=k;i++){
if((a[k-i]==j)||(a[k-i]==j-i)||(a[k-i]==j+i)){ //判断左上,右上,该列有没有其他皇后
return false;}
}
return true;
}
private void printResult() {
// TODO Auto-generated method stub
for(int i=0;i<8;i++){
for(int j=0;j<8;j++){
if(a[i]==j){
System.out.print("Q");
}else {
System.out.print("0");
}
}
System.out.println();
}
}
}