Description
redraiment在家极度无聊,于是找了张纸开始统计素数的个数。 设函数f(n)返回从1->n之间素数的个数。 redraiment发现: f(1) = 0 f(10) = 4 f(100) = 25 ... 满足g(m) = 17 * m2 / 3 - 22 * m / 3 + 5 / 3 其中m为n的位数。 他很激动,是不是自己发现了素数分布的规律了! 请你设计一个程序,求出1->n范围内素数的个数,来验证redraiment是不是正确的,也许还可以得诺贝尔奖呢。^_^
Input
输入包括多组数据。 每组数据仅有一个整数n (1≤n≤100000000)。 输入以0结束
Output
对于每组数据输入,输出一行,为1->n(包括n)之间的素数的个数。
Sample Input
1
10
65
100
0
Sample Output
0
4
18
25
HINT
报告参见http://acm.zjgsu.edu.cn/Report/1006/1006.html
Source
代码:
#include <iostream>
#include <cmath>
using namespace std;
int w(int n);
void wc(int n)
{
int sum=0,i=0;
if (n<2)
;
else for (i=2;i<n;i++)
{
sum+=w(i);
}
cout<<sum<<'\n';
}
int w(int n)
{
int a=2,b;
while (a<=sqrt(n))
{
b=n%a;
if (b==0)
return 0;
a++;
}
return 1;
}
int main()
{
int n;
while (cin>>n&&n!=0)
wc(n);
return 0;
}
运行结果: