295. Find Median from Data Stream
Description:
Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.
Difficulty:hard
Example:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
方法:最大堆与最小堆
- Time complexity : O ( l o g n ) O\left ( logn\right ) O(logn)
- Space complexity :
O
(
n
)
O\left ( n \right )
O(n)
思路:
首先将数据分为两部分,位于 上边最大堆的数据要比最小堆的数据都要小。
为了保证将数据平均分配到两个堆中,在动态的操作的过程中两个堆中数据的数目之差不能超过 1
为了保证 最大堆中的所有数据都小于最小堆中的数据,在操作过程中,新添加进去的数据需要先和最大堆的最大值以及最小堆中的最小值进行比较
通俗点来讲,我们利用两个堆来存储一个有序数组,最大堆存储元素较小的一半,其堆顶元素有可能参与中位数的计算,最小堆存储元素较大的一半,其堆顶元素有可能参与中位数计算。
#include <vector>
#include <algorithm>
#include <iostream>
#include <queue>
using namespace std;
class MedianFinder {
public:
/** initialize your data structure here. */
priority_queue<int, vector<int>> max_heap;
priority_queue<int, vector<int>, greater<int>> min_heap;
void addNum(int num) {
max_heap.push(num);
min_heap.push(max_heap.top());
max_heap.pop();
if(max_heap.size() < min_heap.size()){
max_heap.push(min_heap.top());
min_heap.pop();
}
}
double findMedian() {
if(max_heap.size() == min_heap.size())
return (max_heap.top() + min_heap.top()) * 0.5;
return max_heap.top();
}
};
int main() {
MedianFinder a;
a.addNum(1);
a.addNum(2);
cout << a.findMedian() << endl;
a.addNum(3);
cout << a.findMedian() << endl;
a.addNum(4);
cout << a.findMedian() << endl;
return 0;
}