iris鸢尾花数据集K近邻分类(KNN)

本文介绍了如何使用Python进行机器学习中的K近邻(KNN)算法,以iris鸢尾花数据集为例,详细阐述了数据预处理、模型训练、预测及评估的全过程,帮助读者掌握KNN算法的应用。
摘要由CSDN通过智能技术生成
#iris数据加载
from sklearn import datasets
iris = datasets.load_iris()
#iris展示数据
#print(iris.data)
#数据名字
#print(iris.feature_names)
#输出的结构
#print(iris.target)
#结果的含义
#print(iris.target_names)
#确认数据的类型
#print(type(iris.data))
#print(type(iris.target))
#确认维度
#print(iris.data.shape)
#print(iris.target.shape)
#x输入数据赋值;y输出数据赋值
x = iris.data
y = iris.target
#print(x)
#print(y)

#模型调用
from sklearn.neighbors import KNeighborsClassifier

#创建实例
#knn = KNeighborsClassifier(n_neighbors=1)
#print(knn)

#模型训练
#knn.fit(x,y)

#模型预测
#knn.predict([[1,2,3,4]])
#x_test = [[1,2,3,4],[2,4,3,2]]
#t1 = knn.predict(x_test)
#print(t1)

#建立一个新的K值

knn_5 = KNeighborsClassifier(n_neighbors=5)
knn_5.fit(x,y)
y_pred = knn_5.predict(x)
print(y_pred)
print(y_pred.shape)

#准确率的计算
from sklearn.metrics import accuracy_score
print(accuracy_score(y,y_pred))

#K=1
knn_1 = KNeighborsClassifier(n_neighbors=1)
knn_1.fit(x,y)
y_pred = knn_1.predict(x)
print(y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值