0-1背包问题(贪心法)

  1. 背包问题
    有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
    要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
    物品 A B C D E F G
    重量 35 30 60 50 40 10 25
    价值 10 40 30 50 35 40 30

    贪心算法描述:

1.改变数组w和v的排列顺序,使其按单位重量价值v[i]/w[i]降序排列;

 2.将数组x[n]初始化为0; //初始化向量

 3.   i=1;

 4.循环直到(w[i]>C);

     4.1    x[i]=1;

     4.2    C=C-w[i];

     4.3     i++;

5.   x[i]=C/w[i];     **/
public class Package2 {

        public static void main(String[] args) {
            Scanner in = new Scanner(System.in);
            System.out.println("请输入物品的数量:");
            int n = in.nextInt();
            int[] w = new int[n];
            int[] v = new int[n];
            System.out.println("现在请输入这些物品的重量:");
            for (int i = 0; i < n; i++) {
                w[i] = in.nextInt();
            }
            System.out.println("现在请输入这些物品的价值:");
            for (int i = 0; i < n; i++) {
                v[i] = in.nextInt();
            }
            System.out.println("现在请输入背包的容量:");
            int c = in.nextInt();
            /**
             *按单位重量价值r[i]=v[i]/w[i]降序排列
             */

            double[] r = new double[n];
            int[] index = new int[n];
            for (int i = 0; i < n; i++) {
                r[i] = (double) v[i] / (double) w[i];
                index[i] = i;
            }
            double temp = 0;
            //降序排列
            for (int i = 0; i < n - 1; i++) {
                for (int j = i + 1; j < n; j++) {
                    if (r[i] < r[j]) {
                        temp = r[i];
                        r[i] = r[j];
                        r[j] = temp;
                        //交换i,j的下标
                        int x = index[i];
                        index[i] = index[j];
                        index[j] = x;
                    }
                }
            }
            /**
             *排序后的重量和价值分别存到w1[]和v1[]中
             */
            int[] w1 = new int[n];
            int[] v1 = new int[n];
            int maxValue = 0;
            for (int i = 0; i < n; i++) {
                w1[i] = w[index[i]];
                v1[i] = v[index[i]];
            }
            System.out.println(Arrays.toString(w1));
            System.out.println(Arrays.toString(v1));
            /**
             *初始化解向量x[n]
             */
            int[] x = new int[n];
            for (int i = 0; i < n; i++) {
                x[i] = 0;
            }
            /**
             *求解并打印解向量
             */
            for (int i = 0; i < n; i++) {
                if (w1[i] < c) {
                    x[i] = 1;
                    c = c - w1[i];
                    maxValue += v1[i];
                }
                else{
                    x[i] = c/w[index[i]];
                    maxValue += x[i]*v[index[i]];
                    //break; 去掉这个就好
                }


            }



            System.out.println("解向量是:" + Arrays.toString(x));
            /**
             *根据解向量求出背包中存放物品的最大价值并打印
             */



            System.out.println("背包中物品的最大价值为:" + maxValue);

        }
}
  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
背包问题贪心算法背包问题 ---- * 已知有n种物品和一个可容纳M重量的背包,每种物品i的重量是w[i]。假定将物品i的一部分x[i]放入背包就会得到p[i]x[i]的效益,这里, * 0<=x[i]<=1,p[i]>0.采用怎样的方法才能使装包的效益最大呢? * 考虑以下情况下的背包问题:n = 3,M = 20,(p0,p1,p2) = (25,24,15),(w0,w1,w2) = * (18,15,10).其中的4个可行解是 * (x0,x1,x2) w0x0 + w1x1 + w2x2 p0x0 + p1x1 + p2x2 * (1/2,1/3,1/4) 16.5 24.25 * (1,2/15,0) 20 28.2 * (0,2/3,1) 20 31 * (0,1,1/2) 20 31.5 * 在这4个可行解中第四个的效益值最大。 定理:如果 p1/w1>=p2/w2>=...>=pn/wn,则算法对于给定的背包问题实例生成一个最优解。 证明: * 设X= (x1,...,xn)是最优解。如果所有的xi = 1,显然这个解是最优解。于是,设j是使xj != 1 的最小下标。由算法可知,对于1<=i<=j * ,xi=1;对于 j<i<=n,xi =0;对于j, 0<=xj<1.如果X不是一个最优解,则必定存在一个可行解Y=(y1,...yn),使得 * piyi > pixi.不失 一般性,可以假定 wiyi =M.设k是使得yk!=xk的最小下标。显然,这样的k必定存在。由上面的假设,可以推得yk<xk. * 这可从3种可能发生的情况,即k<j,k=j,k>j分别得到证明: (1)若k<j,则xk = 1.因yk!=xk,从而yk<xk. (2)若k=j ,由于 ∑wjxi = * M,且对1<=i<j,有xi=yi=1,而对j<i<=n,有xi =0.若yk>xk,显然有∑wiyi>M,与Y是可行解矛盾。若yk=xk * ,与假设yk!=xk矛盾,故yk<xk. (3)若k>j,则∑wiyi>m,这是不可能的。 * 现在,假定把yk增加到xk,那么必须从(yk+1,...,yn)中减去同样多的量,使得所有的总容量仍是M。这导致一个新的解Z=(z1,...zn), * 其中,zi = xi , 1<=i<=k,并且∑(k<i<=n)wi(yi-zi)= wk(zk-yk).因此,对于Z有 * ∑pizi = ∑piyi + (zk-yk)wkpk/wk-∑(k<i<=n)(yi-zi)wipi/wi * >= ∑piyi +[(zk-yk)wk-∑(yi-zi)wi]pk/wk * = ∑piyi * 如果∑pizi>∑piyi,则Y不可能是最优解。如果这两个和数相等,同时Z=X,则X就是最优解;若Z!=X,则重复上面的讨论,或者证明Y不是最 * 优解,或者把Y转换成X,从而证明了X也是最优解。证毕。 */ public class BinSerch { //对数组buf降序排列 同时 index 数组记录排序前的数组索引 public static void order(double[] buf, int[] index) { int count = 1; while (count++ < buf.length) { for (int i = buf.length - 1; i > 0; i--) { if (buf[i] > buf[i - 1]) { double temp = buf[i]; buf[i] = buf[i - 1]; buf[i - 1] = temp; int temp1 = index[i]; index[i] = index[i - 1]; index[i - 1] = temp1; } else continue; } } for (int j = 0; j < buf.length; j++) { System.out.print(buf[j] + "(" + j + ")"); } System.out.println(); } public static void main(String[] args) { //对上述背包问题求最优解 int n = 3; //物品数量 double[] p = { 25, 24, 15 }; //效益数组 double[] w = { 18, 15, 10 }; //重量数组 double[] pw = { p[0] / w[0], p[1] / w[1], p[2] / w[2] }; //选取pi/wi为其量度标准 int[] index = { 0, 1, 2 }; //数组索引 double[] record = new double[3];//记录排序前数组下标 double cu = 20; //背包剩余容量 order(pw, index); //排序 //背包问题贪心算法 int i = 0; for (i = 0; i < n; i++) { if (w[index[i]] < cu) { record[i] = 1; cu = cu - w[index[i]]; } else { break; } } if (i < n) { record[i] = cu / w[index[i]]; } for (int j = 0; j < record.length; j++) { System.out.print("x" + j + "\t"); System.out.print(record[j] + "\t"); } } }
### 回答1: 0-1背包问题是一个经典的组合优化问题,其目标是在限定的背包容量下,选择一组物品放入背包中,使得背包中物品的总价值最大化。 贪心法是一种求解0-1背包问题的常用方法。其基本思想是每次选择当前最有利的物品放入背包中,直至背包容量不足或所有物品都放入背包为止。 具体实现贪心法0-1背包问题c的步骤如下: 1. 将所有物品按照单位重量的价值从大到小进行排序; 2. 初始化背包容量剩余空间为背包的总容量,初始化背包的总价值为0; 3. 依次遍历排序后的物品列表,对于每个物品: - 如果物品重量小于等于背包剩余空间,则将该物品放入背包中,背包剩余空间减少该物品重量,背包总价值增加该物品价值; - 如果物品重量大于背包剩余空间,则终止循环; 4. 返回背包中的物品总价值作为结果。 贪心法0-1背包问题c的时间复杂度为O(nlogn),其中n为物品数量,主要消耗时间的操作是对物品列表的排序。 ### 回答2: 贪心法是一种常用的求解最优问题的算法,包括0-1背包问题。在0-1背包问题中,我们有一系列物品,每个物品有重量和价值两个属性。我们需要选择一些物品放入背包,使得背包的总重量不超过背包的容量,同时能够使得背包中物品的总价值最大化。 贪心法的思想是每次选择当前最有利于解的选择,即每次选择重量最小但价值最高的物品放入背包。具体步骤如下: 1. 根据物品的重量和价值计算每个物品的价值密度(即单位重量下的价值)。 2. 将物品按照价值密度从高到低排序。 3. 依次选择物品放入背包,直到背包的重量达到限制或者所有物品都已经放入背包。 4. 计算放入背包的物品的总价值。 贪心法的优点是简单高效,时间复杂度较低。然而,贪心法并不保证能够得到最优解。在某些情况下,使用贪心法得到的结果可能与动态规划等其他算法得到的结果不一致。 对于0-1背包问题c,我们可以使用贪心法求解。具体步骤如下: 1. 计算每个物品的价值密度,即价值除以重量。 2. 按照价值密度从高到低对物品进行排序。 3. 依次选择物品放入背包,直到背包的重量达到限制或者所有物品都已经放入背包。 4. 最后计算放入背包的物品的总价值。 需要注意的是,虽然贪心法在某些情况下可能得到次优解,但在某些特殊的条件下,贪心法却可以得到最优解。因此,在实际应用中,根据具体问题的特点选择合适的算法是很重要的。 ### 回答3: 0-1背包问题是一个经典的动态规划问题,目标是在有限容量的背包中选择若干个物品放入背包,使得物品的总价值最大化。而贪心法无法解决0-1背包问题的最优解。 贪心法是一种贪婪的策略,每次选择当前看起来最好的解决方案。但在0-1背包问题中,贪心法会导致错误的结果。例如,假设有三个物品A、B和C,分别占据1、4和3的容量,价值分别为2、5和4,而背包的容量为4。若采用贪心法,首先选择B放入背包,然后剩余容量为0,无法再放入其他物品,总价值为5。但实际上,最优解应该是选择A和C,总价值为6。 因此,为了解决0-1背包问题,需要采用动态规划的方法。动态规划通过将问题划分为子问题,并保存子问题的解,最后通过组合子问题的解得到原问题的最优解。对于0-1背包问题,可以使用一个二维数组dp来保存子问题的解,其中dp[i][j]表示在前i个物品中,容量为j的背包可以获得的最大价值。通过迭代计算dp数组,最后得到dp[n][C]即为问题的最优解。 综上所述,贪心法无法解决0-1背包问题的最优解,需要采用动态规划的方法来求解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值