codeforces 566A Matching Names

本文介绍了一种基于贪心策略的字符串匹配算法实现,通过构建特殊的数据结构来寻找字符串之间的最长匹配对,并采用动态调整的方式确保每一对匹配都是最优选择。文章提供了完整的C++代码示例,展示了如何有效地进行字符串匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

重点是贪心。

显然,若a,b分别是前n个与后n个串中可匹配的最长的那个,那么a一定和b匹配。把a,b“删除”,依次类推。

明白了这个思路问题就很简单了

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;

const int maxn = 800005;

vector <int> a[2][maxn];
int g[maxn*2][26],cou;

void add(int type,int num,char * ch) {
	int i=0,now=0,va;
	while(ch[i]) {
		va=ch[i]-'a';
		if(g[now][va]==0) {
			g[now][va]=cou++;
		}
		a[type][g[now][va]].push_back(num);
		now=g[now][va];i++;
	}
}

int match[100005],matched[100005],n;
ll ans;

void find_match () {
	int i,x,y;i=cou-1;
	while(i) {
		ans+=min(a[0][i].size(),a[1][i].size());
		x=y=0;
		while(x<a[0][i].size()&&y<a[1][i].size()) {
			if(match[a[0][i][x]]!=0) {x++;continue;}
			if(matched[a[1][i][y]]!=0) {y++;continue;}
			match[a[0][i][x]]=a[1][i][y];
			matched[a[1][i][y]]=a[0][i][x];
			x++;y++;
		}
		i--;
	}
	x=1;y=1;
	while(x<=n) {
		if(match[x]==0) {
			while(matched[y]!=0) y++;
			match[x]=y;y++;
		}
		x++;
	}
	
}

void init() {
	cou=1;ans=0;
}

char in[maxn];

int main()
{
	int i,j;cin>>n;init();
	for(i=0;i<=1;i++) for(j=1;j<=n;j++) {
		scanf("%s",in);add(i,j,in);
	}
	find_match();
	cout<<ans<<endl;
	for(i=1;i<=n;i++) printf("%d %d\n",i,match[i]);
	return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值