“相关性”定量描述两个时序信号之间的线性相关性。“”计算公式为两个变量之间的协方差与各变量标准差之间的比值“”。方差、标准差、协方差、相关系数 - 知乎 (zhihu.com) 可见这篇文章解读。①方差衡量平方波动,受离群值影响很大。②标准差衡量绝对值波动。标准差越小,数据在统计分布中越集中。③协方差衡量两变量的总体误差,反应两个变量的协同关系。协方差的计算公式是各变量与其均值之差乘积的期望值”,cov(X,Y) = E[(X-E(X))*(Y-E(Y))] = E[XY] - E[X]E[Y],相当于各变量乘积期望值-各变量期望值的乘积。符号区分同向反向变化,数值反应同向程度。④相关系数是协方差的归一化,消除了两个变量量纲/变化幅度不同的影响,反应两个变量在每单位变化的相似程度。
“自相关”和“互相关”的差异。“自相关”分析了不同两个时刻的取值之间的线性相关程度,或者说,分析了由不同的两个时刻对应的两个变量的相关性。“互相关”分析两个信号在不同时刻的线性相关程度。“自相关”用来寻找信号中的重复模式。“自相关函数”通常用大写字母R表示,计算公式定义为t时刻信号和t+τ时刻信号的乘积之和(对于“离散信号”)或积分(对于“连续信号”) 。
“自相关函数”和“自相关系数”的差异。“自相关函数”不等同于“自相关系数”。从计算公式来看,以离散信号为例,“自相关函数”定义为两个时刻变量的观测值乘积之和,而“自相关系数”定义为两个时刻变量的观测值的协方差归一化。“自相关系数”和“自相关系数”之间存在一个转换关系。ρx,x = cov(x(t1),x(t2))/(σx(t1)σx(t2)) = (Rx,x - μx2)/σx2。那为什么是这样的一个转换关系呢?因为两个时刻的协方差等于“变量乘积的期望-变量期望的乘积”,变量乘积的期望”等于自相关函数的定义,变量期望的乘积等于变量均值的乘积,最后利用各自的标准化进行协方差的归一化。
信号的自相关函数性质。在理解自相关函数性质时,需要结合自相关函数的定义去理解。(1)自相关函数是偶函数,说明自相关函数关于τ=0对称;(2)τ=0,相当于t时刻变量自身的乘积,自相关函数取最大值,物理意义相当于信号的方差;(3)这句话很重要,周期的自相关函数仍为同频率的周期信号;(4)若随机信号不含周期成分,当τ趋于无穷大时,自相关函数趋于信号平均值的平方。