http://poj.org/problem?id=1222
转载自
http://blog.csdn.net/morgan_xww/article/details/5801296
题目大意:给你一个5行6列的矩阵分别表示30个灯,矩阵map[i][j]=1表示灯亮着, =0表示灯没亮。要求你输出解决方案
press[][],press[i][j]=1表示按一下,=0表示不按。使得最后状态为所有灯都熄灭。
首先找出其中的一些规律:
(1)第2次按下同一个按钮时,将抵消第1次按下时所产生的结果。因此,每个按钮最多只需要按下一次;
(2)各个按钮被按下的顺序对最终的结果没有影响;
这道题是在《程序设计引导及在线实践》上看到的,当然代码也是参照上面的写的。该题是属于“枚举”类的。
如果要枚举所有的情况有2^30种,这是不可能的。所以还要寻找一些规律:
当第一行的press已经确定了,操作之后:
如果位置(1, j)上的灯是点亮的,则要按下位置(2, j)上按钮,即press[2][j]一定取1;
如果位置(1, j)上的灯是熄灭的,则不能按位置(2, j)上按钮,即press[2][j]一定取0。
这样依据press 的第一、二行操作矩阵中的按钮,才能保证第一行的灯全部熄灭。依此类推,可以确定press第三 四 五 行的值。
所以具体实现方法就是:先枚举出press第一行的所有情况,总共有2^6=64种。再根据 上面的规律确定press第三 四 五 行的值。最后判断第五行的灯是否全部熄灭,若全部熄灭则找到了答案。 代码实现如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <algorithm>
using namespace std;
int map[7][8], press[7][8];
int Test(void)
{
int i, j;
for (i=2; i<=5; i++)//更新press[][]的值
{
for (j=1; j<=6; j++)
{
press[i][j] = (map[i-1][j]+press[i-1][j]+press[i-1][j-1]+press[i-1][j+1]+press[i-2][j])%2;
}
}
for (j=1; j<=6; j++)//检验最后一行灯是否全部熄灭
{
if ((press[5][j-1]+press[5][j]+press[5][j+1]+press[4][j])%2 != map[5][j])
return 0;
}
return 1;
}
void Enum(void) //枚举第一行press的2^6中情况
{
int i;
for (i=1; i<=6; i++)
press[1][i] = 0;
while (!Test()) //枚举的方法其实就是枚举6位二进制数的所有情况
{
press[1][1]++;
i = 1;
while (press[1][i] == 2)
{
press[1][i] = 0;
i++;
press[1][i]++;
}
}
}
int main()
{
int T, t, i, j;
scanf("%d", &T);
for (t=1; t<=T; t++)
{
for (i=1; i<=5; i++)
for (j=1; j<=6; j++)
scanf("%d", &map[i][j]);
Enum();
printf("PUZZLE #%d\n", t);
for (i=1; i<=5; i++)
{
for (j=1; j<6; j++)
printf("%d ", press[i][j]);
printf("%d\n", press[i][6]);
}
}
}