EGNet实验中的一些问题(2)

本文详述了在Ubuntu 20.04上安装CUDA 11.1、cudnn 8.0.5及PyTorch的过程,包括驱动下载、库文件链接、环境变量设置和软连接修复。同时,介绍了如何在PyCharm中配置Anaconda环境,以及EGNet实验中涉及的代码修改和训练测试流程。

1、系统方面先装驱动,去官方网站 https://www.nvidia.cn/geforce/drivers/ 下载安装,或Ubuntu设置中——关于——软件更新——附加驱动——选择 专有tested。然后根据Ubuntu版本安装cuda,cudnn,pytorch,torchvison等,这些都是需要版本型号匹配的,不能随便安装版本。

本机Ubuntu是20.04,选择的cuda是cuda11.1 (可以去cuda官方网站上找到对应的版本进行下载安装),安装路径/usr/local,nvcc -V验证是否成功。安装cuda的时候如果驱动提前装了,这时需要取消勾选安装driver驱动以安装cuda toolkit。(如果驱动重新装,那么cuda也要再次重新装)

cudnn是下载的cudnn-10.1-linux-x64-v8.0.5.39,安装过程其实就是将解压后的cudnn中的cuda的库和头文件复制到本机安装的cuda的目录下,如/usr/local/cuda-11.1
sudo cp cuda/include/cudnn.h  /usr/local/cuda-11.1/include
sudo cp cuda/lib64/libcudnn*  /usr/local/cuda-11.1/lib64
sudo chmod a+r  /usr/local/cuda-11.1/include/cudnn.h /usr/local/cuda-11.1/lib64/libcudnn*
然后是修改一些软链接,(下面的8.0.5是对应于cudnn中的版本号???)

cd /usr/local/cuda/lib64/
#删除原有动态文件
sudo rm -rf libcudnn.so libcudnn.so.8
#生成软衔接
sudo ln -s libcudnn.so.8.0.5 libcudnn.so.8 
#生成软链接
sudo ln -s libcudnn.so.8 libcudnn.so
sudo ldconfig

如果这个过程中报错,进一步参考

解决方案:

sudo ln -sf /usr/local/cuda-11.1/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.0.1 /usr/local/c

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值