batch size设置技巧 谈谈batchsize参数

本文解析了深度学习中的epoch、iteration和batchsize概念,并探讨了不同batchsize对训练过程的影响,包括收敛速度、精度等方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习中经常看到epoch、 iteration和batchsize,下面按自己的理解说说这三个的区别:

(1)batchsize:批大小。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练;
(2)iteration:1个iteration等于使用batchsize个样本训练一次;
(3)epoch:1个epoch等于使用训练集中的全部样本训练一次;

举个例子,训练集有1000个样本,batchsize=10,那么:
训练完整个样本集需要:
100次iteration,1次epoch。

1.当数据量足够大的时候可以适当的减小batch_size,由于数据量太大,内存不够。但盲目减少会导致无法收敛,batch_size=1时为在线学习,也是标准的SGD,这样学习,如果数据量不大,noise数据存在时,模型容易被noise带偏,如果数据量足够大,noise的影响会被“冲淡”,对模型几乎不影响。2.batch的选择,首先决定的是下降方向,如果数据集比较小,则完全可以采用全数据集的形式。这样做的好处有两点,

 1)全数据集的方向能够更好的代表样本总体,确定其极值所在。

2)由于不同权重的梯度值差别巨大,因此选取一个全局的学习率很困难。

3.增大batchsize的好处有三点:

     1)内存的利用率提高了,大矩阵乘法的并行化效率提高。

     2)跑完一次epoch(全数据集)所需迭代次数减少,对于相同的数据量的处理速度进一步加快。

     3)一定范围内,batchsize越大,其确定的下降方向就越准,引起训练震荡越小。

4.盲目增大的坏处有三点:

1)当数据集太大时,内存撑不住。

     2)跑完一次epocffe-master/tools/extra/parse_log.sh  caffe-master/tools/extra/extract_seconds.py和h(全数据集)所需迭代次数减少了,但要想达到相同的      精度,时间开销太大,参数的修正更加缓慢。

     3)batchsize增大到一定的程度,其确定的下降方向已经基本不再变化。

总结:

     1)batch数太小,而类别又比较多的时候,真的可能会导致loss函数震荡而不收敛,尤其是在你的网络比较复杂的时候。

     2)随着batchsize增大,处理相同的数据量的速度越快。

     3)随着batchsize增大,达到相同精度所需要的epoch数量越来越多。

     4)由于上述两种因素的矛盾, Batch_Size 增大到某个时候,达到时间上的最优。

     5)由于最终收敛精度会陷入不同的局部极值,因此 Batch_Size 增大到某些时候,达到最终收敛精度上的最优。

     6)过大的batchsize的结果是网络很容易收敛到一些不好的局部最优点。同样太小的batch也存在一些问题,比如训练速度很慢,训练不容易收敛等。

     7)具体的batch size的选取和训练集的样本数目相关。

还有一个代码上的细节:就是代码实现上选取一个batch的时候似乎是按着数据库的图片顺序选取输入图片的,所以在生成数据库的时候切记要shuffle一下图片顺序。caffe中ImageDataLayer有shuffle参数,生成lmdb时也有shuffle参数不必手动。

显存占用不是和batch size简单成正比

增大batch size能减缓梯度震荡,需要更少的迭代优化次数,收敛的更快,但是每次迭代耗时更长。
https://zhuanlan.zhihu.com/p/31558973

要想收敛到同一个最优点,使用整个样本集时,虽然迭代次数少,但是每次迭代的时间长,耗费的总时间是大于使用少量样本多次迭代的情况的。
实际上,工程上在使用GPU训练时,跑一个样本花的时间与跑几十个样本甚至几百个样本的时间是一样的!当然得益于GPU里面超多的核,超强的并行计算能力啦。因此,在工程实际中,从收敛速度的角度来说,小批量的样本集是最优的,也就是我们所说的mini-batch。这时的batch size往往从几十到几百不等,但一般不会超过几千。

样本量少的时候会带来很大的方差,而这个大方差恰好会导致我们在梯度下降到很差的局部最优点(只是微微凸下去的最优点)和鞍点的时候不稳定,一不小心就因为一个大噪声的到来导致炸出了局部最优点。
与之相反的,当样本量很多时,方差很小,对梯度的估计要准确和稳定的多,因此反而在差劲的局部最优点和鞍点时反而容易自信的呆着不走了,从而导致神经网络收敛到很差的点上,跟出了bug一样的差劲。

batch的size设置的不能太大也不能太小,因此实际工程中最常用的就是mini-batch,一般size设置为几十或者几百。
对于二阶优化算法,减小batch换来的收敛速度提升远不如引入大量噪声导致的性能下降,因此在使用二阶优化算法时,往往要采用大batch哦。此时往往batch设置成几千甚至一两万才能发挥出最佳性能。
GPU对2的幂次的batch可以发挥更佳的性能,因此设置成16、32、64、128…时往往要比设置为整10、整100的倍数时表现更优

一、基础知识与概念1.1 简要介绍Apache Kafka是什么,它的主要用途是什么?1.2 解释一下Kafka中的Producer、Broker、Consumer以及Topic的概念?1.3 Kafka的消息是如何保证顺序性的?1.4 Kafka中的消息是如何存储的?1.5 解释Kafka的高可用性和分区(Partitions)机制?二、架构与设计2.1  Kafka集群是如何工作的?如何设计一个高可用的Kafka集群?2.2  Kafka中的副本(Replication)是如何实现的?它如何保证数据不丢失?2.3  解释一下Kafka的ISR(In-Sync Replica)列表及其重要性?2.4 Kafka支持的几种消息传递语义有哪些?2.5  如何在Kafka中实现消息的持久化和缓存策略?三、消费者与生产者3.1  Kafka消费者如何消费消息?特别是谈论消费者组的概念及其作用。3.2 如何在Kafka生产者中配置消息发送的可靠性保障?3.3 Kafka消费者如何处理消息的偏移量(Offsets)管理?手动提交与自动提交的区别?3.4  如何实现Kafka的 Exactly-Once 消息传递语义?四、性能与优化4.1  影响Kafka性能的因素有哪些?如何进行性能调优?4.2  解释Kafka的批处理机制及其对性能的影响?4.3  Kafka如何处理大量消息积压的情况?4.4  谈谈Kafka的延时问题以及可能的解决方案?五、故障排查与安全性5.1  如果Kafka Broker宕机了,会有什么影响?如何恢复?5.2  如何监控和诊断Kafka集群的健康状况?5.3  Kafka提供了哪些安全特性来保护数据?如何实施认证和授权?5.4  在多租户环境下,如何确保Kafka的安全隔离?
最新发布
04-03
### Apache Kafka 基础概念 Apache Kafka 是一种高吞吐量的分布式发布订阅消息系统,最初由 LinkedIn 开发并开源[^2]。它被设计用于处理实时数据流,并支持大规模的数据管道和应用程序集成。 #### 核心组件 - **主题 (Topic)**:Kafka 中的消息类别或提要名称。 - **分区 (Partition)**:每个主题可以划分为多个分区,这些分区分布在不同的服务器上以提高可伸缩性。 - **副本 (Replica)**:为了提供容错能力,Kafka 支持为每个分区创建多个副本。 - **生产者 (Producer)** 和 **消费者 (Consumer)**:分别负责向 Kafka 发送消息以及从 Kafka 接收消息。 --- ### 架构设计 Kafka 的架构基于分布式系统设计理念,其核心目标是高性能、持久化存储和水平扩展能力。以下是主要特点: 1. **分布式的日志记录**:Kafka 将消息作为不可变的日志条目保存在磁盘中,允许快速随机访问。 2. **分区机制**:通过将主题分成多个分区来实现负载均衡和更高的吞吐量。 3. **复制机制**:确保即使某些节点失效,仍然能够继续服务请求。 4. **ZooKeeper 协调**:早期版本依赖 ZooKeeper 来管理元数据和服务发现;新版本逐渐减少对其依赖。 --- ### 生产者与消费者模型 Kafka 使用经典的生产者-消费者模式来进行消息传递。这种模型具有以下几个重要方面: #### 生产者行为 - **同步 vs 异步发送**:生产者可以选择同步方式等待确认或者异步批量提交消息。 - **重试策略**:当发生网络错误或其他临时问题时,生产者可以根据配置自动尝试重新发送失败的消息。 - **压缩选项**:启用压缩功能可以帮助节省带宽资源消耗[^1]。 #### 消费者行为 - **拉取模型**:不同于传统的推送方法,Kafka 让客户端主动获取所需的信息。 - **偏移量控制**:每一条已读过的记录都会有一个对应的 offset 值用来标记位置状态以便后续追踪进度。 --- ### 性能优化建议 针对不同场景下的需求调整参数设置对于提升整体效率至关重要: 1. 批量加载大小 (`batch.size`) 调整至合理范围有助于平衡延迟与传输成本之间的关系; 2. 设置合适的 `linger.ms` 参数可以让更多待发送项组合成单次操作从而降低频率; 3. 对于频繁写入密集型应用而言增加线程池规模可能带来显著改善效果[^3]。 --- ### 故障排查指南 当面对诸如超时异常等问题时可以从以下几个角度入手分析原因所在: - 检查网络连接状况是否存在丢包现象影响正常通信过程; - 确认 broker 是否处于健康运行状态下并且有足够的可用空间供分配给新的分片实例使用; - 查看 client-side logs 寻找更详细的报错描述辅助定位根本症结所在。 --- ### 安全特性概述 随着企业级部署越来越普遍,安全性也成为考量重点之一: - 数据加密传输保护敏感资料免受中途截获威胁; - 用户认证授权体系防止未授权访问破坏业务逻辑流程; - SSL/TLS 加密通道建立端到端保密通讯环境保障隐私权不受侵犯。 ```python from kafka import KafkaProducer, KafkaConsumer producer = KafkaProducer(bootstrap_servers='localhost:9092') consumer = KafkaConsumer('my_topic', bootstrap_servers='localhost:9092') for message in consumer: print(f"Received {message.value.decode()}") ```
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zqx951102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值