(最近做题太少,只能水一个简单的文章。)
大概就是三个题目混合起来。
首先给出定义:一个可重集 S S S 可以表示出数 x x x,当且仅当存在 T ⊂ S T\subset S T⊂S 使得 T T T 中元素的和恰为 x x x。
例 1
题意:给定数组 a a a 和数 n n n,问最少向 a a a 中插入多少个在 [ 1 , n ] [1, n] [1,n] 中的正整数,能让 a a a 构成的可重集表示出 x x x。(来源:Leetcode 330)
贪心。
一个很显然的想法是:如果当前数组覆盖不到 x x x,那么我们肯定要添加一个 ≤ x \le x ≤x 的数到数组中去。我们现在就考虑怎么把这个数填上,让它产生的效果尽量好。
我们假设当前可以覆盖到的区间是 [ 1 , x ) [1, x) [1,x),那么如果把 y ≤ x y\le x y≤x 加到数组中,那么整个数组就可以多覆盖 y , y + 1 , ⋯ , y + x − 1 y, y+1, \cdots, y+x-1 y,y+1,⋯,y+x−1 这些数,换言之,覆盖范围就多了 [ y , y + x ) [y, y+x) [y,y+x) 这一块。由于 y ≤ x y \le x y≤x,故两个区间可以合并为 [ 1 , y + x ) [1, y+x) [1,y+x)。那么显然,如果要加入的话当然是加入 x x x 可以使得覆盖范围增加的最多。这就回答了我们之前的问题。
这样算法的雏形就出来了:我们维护这样一个区间,记录最小的无法覆盖到的数 x x x。一开始设 x = 1 x=1 x=1。然后从小到大用 a a a 中的值去更新 x x x,如果当前的值大于 x x x 就表明一定要新加入一个数,由上一段的结论可知加入 x x x 是最好的。如此反复,直到全部覆盖为止。
例 1 中说明了如何利用贪心思想确定一个可重集 S S S 能否表示出 x x x。很容易将其扩展到区间询问上。
例 2
题意:给定长为 n n n