题目:
https://www.luogu.com.cn/problem/P1192
记忆化搜索是可以转化成动态规划的,它们的状态变化的方程是一样。画的树图是一样的。 案例N = 5,K = 2.
dfs(x-1)+ dfs (x-2) : dp[i-1] + dp[i-2] = 1 : 1;这两个方程是1比1关系。
记忆化搜索是先递后归,在这张图中递是从5开始从第一个子树开始向下寻找答案,不断分解子问题。归就是从底端回溯,收集答案的过程。并储存搜索过的点,再下一个子树的时候就减少很多时间。num[0]
的值是在递归调用 dfs(0)
时隐式地设置为 1 的。这个设置是基于递归基准情况和记忆化技术的正确应用。
代码如下
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
int n, k;
const int mod = 100003;
const int maxn = 1e5 + 5;
LL num[maxn];
LL dfs(int x)
{
if(x < 0)//x < k的时候不存在直接返回0,所以最大也只会写到dfs(1~x)的范围
return 0;
else if(num[x])
return num[x];
else if(x == 0)
return num[x] = 1;
LL ans = 0;
for(int i = 1; i <= k; i++)
{
ans = (ans + dfs(x - i)) % mod;//当x > k其实就是 dfs(x-k ~ x-1), 当x = k时就是dfs(1~x),当x < k的时候,调用下一个dfs函数的时候直接返回0
}
num[x] = ans; //记忆
return num[x];
}
int main()
{
cin >> n >> k;
cout << dfs(n);
return 0;
}
动态规划是一样的,但是是凑出方案数的,就像从树底部向上爬,一步一步凑出来,而记忆化搜索是分解子问题,从上往下,归的时候发方向也是从下往上。
代码如下:
#include <iostream>
#include <vector>
const int MAX = 1e5 + 5;
const int MOD = 100003;
using namespace std;
int main()
{
int n, k;
cin >> n >> k;
int dp[MAX] = {0};
dp[0] = 1;//可能有人会写dp[1] = 1;也可以把i改成2开始就可以。
for (int i = 1; i <= n; ++i)
{
for (int j = 1; j <= k && j <= i; ++j)
{
dp[i] = (dp[i] + dp[i - j]) % MOD;
}
}
cout << dp[n] << endl;
return 0;
}
它们的结果图都是AC