# [蓝桥杯 2020 省 AB2] 子串分值
## 题目描述
对于一个字符串 $S$, 我们定义 $S$ 的分值 $f(S)$ 为 $S$ 中恰好出现一次的字符个数。例如 $f\left({ }^{\prime \prime} \mathrm{aba}{ }^{\prime \prime}\right)=1$,$f\left({ }^{\prime \prime} \mathrm{abc}{ }^{\prime \prime}\right)=3$,$f\left({ }^{\prime \prime} \mathrm{aaa} \mathrm{a}^{\prime \prime}\right)=0$ 。
现在给定一个字符串 $S[0 . . n-1]$(长度为 $n$),请你计算对于所有 $S$ 的非空 子串 $S[i . . j](0 \leq i \leq j<n)$,$f(S[i . . j])$ 的和是多少。
## 输入格式
输入一行包含一个由小写字母组成的字符串 $S$。
## 输出格式
输出一个整数表示答案。
## 样例 #1
### 样例输入 #1
```
ababc
```
### 样例输出 #1
```
21
```
## 提示
对于 $20 \%$ 的评测用例, $1 \leq n \leq 10$;
对于 $40 \%$ 的评测用例, $1 \leq n \leq 100$;
对于 $50 \%$ 的评测用例, $1 \leq n \leq 1000$;
对于 $60 \%$ 的评测用例, $1 \leq n \leq 10000$;
对于所有评测用例, $1 \leq n \leq 100000$。
蓝桥杯 2020 第二轮省赛 A 组 H 题(B 组 H 题)。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
string s;
ll lastpos,nextpos,ans;
int main()
{
cin>>s;
int n=s.size();
for(int i=0;i<n;i++){
lastpos=-1,nextpos=-1;
for(int j=i-1;j>=0;j--){
if(s[i]==s[j]){lastpos=j+1;
break;}
}
if(lastpos==-1)lastpos=0;
for(int j=i+1;j<n;j++){
if(s[i]==s[j]){nextpos=j-1;
break;}
}
if(nextpos==-1)nextpos=n-1;
ans+=(i-lastpos+1)*(nextpos-i+1);
}
cout<<ans;
return 0;
}