【C++】6-6 从shape类派生出一个正n边形分数 10

6-6 从shape类派生出一个正n边形

分数 10

全屏浏览

切换布局

作者 张德慧

单位 西安邮电大学

在一个正n边形(Regular Polygon)中,所有边的边长都相等,且所有角的度数相同(即这个多边形是等边、等角的)。请从下列的抽象类shape类扩展出一个正n边形类RegularPolygon,这个类将正n边形的边数n和边长s作为私有成员,类中包含初始化边数n和边长s的构造函数。

class shape {// 形状类
public:
 double getArea()  // 求面积
 {return -1;}
 double getPerimeter() // 求周长
 {return -1;}
};

计算正n边形的面积公式为: Area=n×a×a/(tan((180度/n))×4);

注意:需要将角度转换成弧度后再计算三角函数。π取3.1415926

函数接口定义:

 

类名:RegularPolygon

裁判测试程序样例:

 

#include <iostream> #include <cmath> using namespace std; class shape {// 形状类 public: double getArea() // 求面积 {return -1;} double getPerimeter() // 求周长 {return -1;} }; /* 请在这里填写答案 */ //Your code will be embed-ed here. int main() { int n; double s; cin>>n>>s; RegularPolygon p(n,s); cout<<p.getArea()<<endl; cout<<p.getPerimeter()<<endl; return 0; }

输入样例:

在这里给出一组输入。例如:

5   3.3

输出样例:

在这里给出相应的输出。例如:

18.736
16.5

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

class RegularPolygon:public shape{
    int n;
    double s;
public:
    RegularPolygon(int n,double s):n(n),s(s){}
    double getArea(){
        double r = 0.5*sqrt(s*s*2);
        //return 0.5*sin((2*M_PI)/n)*r*r*n;
        return (n * s * s) / (4 * tan(M_PI / n));
        }
    double getPerimeter(){
        return n*s;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值