高中数学习题答案的一个错误

文章讨论了人教高中数学教材中的一个问题,质疑了给出的习题答案忽视了银行利率对现值计算的影响。作者指出,企业利润的现值计算公式中未考虑利率,导致结论无法在5年内收回5500万投资。文章还探讨了这个提议的道德层面和社会接受度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人教高中数学(B版)选择性必修第三册习题5-4B第5题


我认为这个答案是错误的,没有把银行利率算进去。
现值的计算为:A0=A/[(1+r)^n] ,其中A为A0在r的利率下n年后的数值,即未来值。
企业利润n年后的现值和应为:
S=200+200*(1+4%)/(1+8%)+200*[(1+4%)/(1+8%)]^2+...+200*[(1+4%)/(1+8%)]^n。
 其中(1+4%)/(1+8%)≈0.96
S=200*(1-0.96^n)/(1-0.96)=5000*(1-0.96^n)<5500
所以:无论多长时间,5500万的投资都无法按条件收回。至于是否同意企业管理人的提议,既要看是否存在这样傻的投资人,也要看能不能过了道德这个槛,毕竟这个提议像诈骗。



















 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值