Redis高级 之 删除策略

一. 过期数据

1. Redis中的数据特征

Redis是一种内存级数据库, 所有数据均存放在内存中,内存中的数据可以通过TTL指令获取其状态

  • XX : 具有时效性的数据
  • -1 : 永久有效的数据
  • -2 : 已经过期的数据 或 被删除的数据 或 未定义的数据
    在这里插入图片描述

2. 时效性数据的存储结构

在这里插入图片描述

二. 数据删除策略

数据删除策略的目标

在内存占用和CPU占用之间寻找一种平衡, 顾此失彼都会造成整体redis性能的下降, 甚至引发服务器宕机或内存泄露

1. 定时删除

  • 创建一个定时器, 当key设置有过期时间, 且过期时间到达时,由定时器任务立即执行对键的删除操作
  • 优点 : 节约内存, 到时就删除, 快速释放掉不必要的内存占用
  • 缺点: CPU压力很大, 无论CPU此时负载量多高, 均占用CPU, 会影响redis服务器响应时间和指令吞吐量
  • 总结: 用处理器性能换取存储空间(拿时间换空间)

2. 惰性删除

  • 数据到达过期时间, 不做处理. 等下次访问该数据时
    (1) 如果未过期, 返回数据
    (2)发现已过期, 删除, 返回不存在
  • 优点 : 节约CPU性能, 发现必须删除的时候才删除
  • 缺点: 内存压力很大, 出现长时间占用内存的数据
  • 总结: 用存储空间换取处理器性能(拿时间换空间)
    在这里插入图片描述

3. 定期删除

在这里插入图片描述

  • 周期性轮询redis库中的时效性数据, 采用随机抽取的策略,利用过期数据占比的方式控制删除频度
  • 特点1 : CPU性能占用设置有峰值, 检测频度可自定义设置
  • 特点2 : 内存压力不是很大, 长期占用内存的冷数据会被持续清理
  • 总结: 周期性抽查存储空间 (随机抽查, 重点抽查)

4. 删除策略对比

在这里插入图片描述

三. 逐出算法

在这里插入图片描述

2. 影响数据逐出的相关配置

  • 最大可使用内存
maxmemory

占用物理内存的比例,默认值为0, 表示不限制. 生产环境中根据需求设定,通常设置在50%以上

  • 每次选取待删除数据的个数
maxmemory-samples

选取数据时并不会全库扫描,导致严重的性能消耗, 降低读写性能. 因此采用随机获取数据的方式作为待检测删除数据

  • 删除策略
maxmemory-policy

达到最大内存后的, 对北挑选出来的数据进行删除的策略

3. 数据逐出策略

  • 检测易失数据(可能会过期的数据集 server.db[i].expires)
  1. volatile-lru : 挑选最近最少使用的数据淘汰
  2. volatile-lfu : 挑选最近使用次数最少的数据淘汰
  3. volatile-ttl : 挑选将要过期的数据淘汰
  4. volatile-random : 任意选择数据淘汰
    在这里插入图片描述
  • 检测全库数据 (所有数据集 server.db[i].dict)
  1. allkeys-lru : 挑选最近最少使用的数据淘汰
  2. allkeys-lfu : 挑选最近使用次数最少的数据淘汰
  3. allkeys-random : 任意选择数据淘汰
  • 放弃数据驱逐
  1. no-enviction(驱逐) : 禁止驱逐数据 (redis4.0中默认策略) , 会引发错误OOM( Out Of Memory )
maxmemory-policy  volatile-lru

4.数据逐出策略配置依据

使用 INFO 命令输出监控信息, 查询缓存 hit 和 miss 的次数, 根据业务需求调优Redis配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值