一. 过期数据
1. Redis中的数据特征
Redis是一种内存级数据库, 所有数据均存放在内存中,内存中的数据可以通过TTL指令获取其状态
- XX : 具有时效性的数据
- -1 : 永久有效的数据
- -2 : 已经过期的数据 或 被删除的数据 或 未定义的数据
2. 时效性数据的存储结构
二. 数据删除策略
数据删除策略的目标
在内存占用和CPU占用之间寻找一种平衡, 顾此失彼都会造成整体redis性能的下降, 甚至引发服务器宕机或内存泄露
1. 定时删除
- 创建一个定时器, 当key设置有过期时间, 且过期时间到达时,由定时器任务立即执行对键的删除操作
- 优点 : 节约内存, 到时就删除, 快速释放掉不必要的内存占用
- 缺点: CPU压力很大, 无论CPU此时负载量多高, 均占用CPU, 会影响redis服务器响应时间和指令吞吐量
- 总结: 用处理器性能换取存储空间(拿时间换空间)
2. 惰性删除
- 数据到达过期时间, 不做处理. 等下次访问该数据时
(1) 如果未过期, 返回数据
(2)发现已过期, 删除, 返回不存在 - 优点 : 节约CPU性能, 发现必须删除的时候才删除
- 缺点: 内存压力很大, 出现长时间占用内存的数据
- 总结: 用存储空间换取处理器性能(拿时间换空间)
3. 定期删除
- 周期性轮询redis库中的时效性数据, 采用随机抽取的策略,利用过期数据占比的方式控制删除频度
- 特点1 : CPU性能占用设置有峰值, 检测频度可自定义设置
- 特点2 : 内存压力不是很大, 长期占用内存的冷数据会被持续清理
- 总结: 周期性抽查存储空间 (随机抽查, 重点抽查)
4. 删除策略对比
三. 逐出算法
2. 影响数据逐出的相关配置
- 最大可使用内存
maxmemory
占用物理内存的比例,默认值为0, 表示不限制. 生产环境中根据需求设定,通常设置在50%以上
- 每次选取待删除数据的个数
maxmemory-samples
选取数据时并不会全库扫描,导致严重的性能消耗, 降低读写性能. 因此采用随机获取数据的方式作为待检测删除数据
- 删除策略
maxmemory-policy
达到最大内存后的, 对北挑选出来的数据进行删除的策略
3. 数据逐出策略
- 检测易失数据(可能会过期的数据集 server.db[i].expires)
- volatile-lru : 挑选最近最少使用的数据淘汰
- volatile-lfu : 挑选最近使用次数最少的数据淘汰
- volatile-ttl : 挑选将要过期的数据淘汰
- volatile-random : 任意选择数据淘汰
- 检测全库数据 (所有数据集 server.db[i].dict)
- allkeys-lru : 挑选最近最少使用的数据淘汰
- allkeys-lfu : 挑选最近使用次数最少的数据淘汰
- allkeys-random : 任意选择数据淘汰
- 放弃数据驱逐
- no-enviction(驱逐) : 禁止驱逐数据 (redis4.0中默认策略) , 会引发错误OOM( Out Of Memory )
maxmemory-policy volatile-lru
4.数据逐出策略配置依据
使用 INFO 命令输出监控信息, 查询缓存 hit 和 miss 的次数, 根据业务需求调优Redis配置