【TensorFlow】关于卷积和pooling层的输出维度问题和相应的参数设置

原创 2018年04月16日 13:05:07
关于tensorflow shape 设置问题:
整形:x_image = tf.reshape(xs,[-1,28,28,1])
#-1 表示最后一行,即num_sample:样本数量
#[28,28] 图片size
#1 表示输出通道数

卷积层:tf.nn.conv2d(x,W,strides,padding='SAME')
strides步长:[1,x,y,1]
strides : strides[0] = strides[3] = 0
#x:水平方向,y:垂直方向
W权重-卷积核:[x_size,y_size,in_channel,out_channel]
#in_channel : 输入通道数
#out_channel : 输出通道数,即filters个数
b偏置-与输出保持一致:[out_channel]
#bias = [out_channel]
卷积之后输出维度计算公式:
设图片原始大小:W * H * D(宽*长*通道数)
参数:K :filters number
F :filter size = F*F
S : strides 步长
P:pading size
输出:
W = [(W - F + 2P)/S] +1
H = [(H - F + 2P)/S] +1
D = K
pooling层:tf.nn.max_pool(x,ksize,strides,padding)
pooling之后输出维度计算公式:
设图片原始大小:W * H * D(宽*长*通道数)
参数:K :filters number
F :filter size = F*F
S : strides 步长
P:pading size
输出:
W = [(W - F )/S] +1
H = [(H - F )/S] +1
D = K

学习用tensorflow实现卷积神经网络中的卷积层随笔

1、因为交叉熵一般会与softmax回归一起使用,所以TensorFlow对这两个功能进行了统一的封装,并提供了tf.nn.softmax_cross_entropy_with_logits函数。比如...
  • DATA8866
  • DATA8866
  • 2017-03-14 15:34:49
  • 1484

Tensorflow 卷积层

Tensorflow函数conv2d的操作图示:示例卷积层的滤波器维数为[3,3,3,2](高3,宽3,3个channel,有两个上述的滤波器。一般理解,filter = [滤波器高,滤波器宽,输入数...
  • u013342586
  • u013342586
  • 2017-02-19 11:44:19
  • 1956

tensorflow_卷积输出结果大小

先定义几个参数 输入图片大小 W×WFilter大小 F×F步长 Spadding的像素数 P 于是我们可以得出:N = (W − F + 2P )/S+1 输出图片大小为 N×N...
  • fireflychh
  • fireflychh
  • 2017-06-26 19:17:04
  • 1083

深度学习与计算机视觉系列(10)_细说卷积神经网络

前面九讲对神经网络的结构,组件,训练方法,原理等做了介绍。现在我们回到本系列的核心:计算机视觉,神经网络中的一种特殊版本在计算机视觉中使用最为广泛,这就是大家都知道的卷积神经网络。卷积神经网络和普通的...
  • yaoqiang2011
  • yaoqiang2011
  • 2016-01-19 19:27:09
  • 53497

Tensorflow逐步讲解实现卷积神经

用tensorflow实现一个卷积神经网络,同时也介绍了卷积核和pooling参数的代表意思。...
  • yuzhou164
  • yuzhou164
  • 2017-03-14 15:15:10
  • 748

tensorflow每层输出图像大小

1、先定义几个参数 Image_size =  W×WFilter_size =  F×FStride =  Spadding的像素数 P 于是我们可以得出 N = (W − F...
  • Julialove102123
  • Julialove102123
  • 2017-11-22 12:22:40
  • 149

tensorflow_conv2d_max_pool卷积池化padding参数为SAME和VALID的区别

卷积:conv2 "VALID" = without padding: inputs: 1 2 3 4 5 6 7 8 9 10 11 (12 ...
  • fireflychh
  • fireflychh
  • 2017-06-26 19:48:57
  • 4418

通过卷积层和池化层后输出大小怎么得出

通过卷积层与池化层后,特征图的大小怎么计算 这里引入cs231n中的课件说明一下: 卷积层:  参数:W:宽  H:高 D:深度 K:卷积核的个数 F:卷积核的大小 S:步长 P:用0填充 ...
  • qq_41670192
  • qq_41670192
  • 2018-02-01 18:53:29
  • 247

利用tensorflow实现神经网络卷积层、池化层、全连接层

第一步:导入相应的库 import tensorflow as tf import numpy as np 第二步:准备数据(随机生成一维数据) data_size=25 x_data=np...
  • qq_34783311
  • qq_34783311
  • 2018-03-14 18:05:44
  • 106

TensorFlow:简单的卷积层、池化层(采样层)示例

卷积层: ws=tf.get_variable('w',[5,5,3,16],initializer=tf.truncated_normal_initializer(stddev=0.1)) bs=t...
  • ms961516792
  • ms961516792
  • 2017-09-13 19:20:40
  • 1106
收藏助手
不良信息举报
您举报文章:【TensorFlow】关于卷积和pooling层的输出维度问题和相应的参数设置
举报原因:
原因补充:

(最多只允许输入30个字)