机器学习
文章平均质量分 64
Paul_Joo
这个作者很懒,什么都没留下…
展开
-
监督学习?无监督学习?
监督学习? 之所以称为监督学习,是因为这类算法必须知道预测什么,即目标变量的分类信息。(分类、回归) 无监督学习? 此时数据没有类别信息,也不会给定目标值。(聚类) 机器学习算法应用程序开发步骤: 1.收集数据 2.准备输入数据 3.分析输入数据 4.训练算法(无监督学习除外,由于不存在目标变量,故而也不需要训练算法) 5.测试算法 6.使用算法原创 2014-11-10 11:25:43 · 336 阅读 · 0 评论 -
k近邻算法(kNN)
k-近邻算法(kNN) 描述:采用测量不同特征值之间的距离方法进行分类。 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称型 工作原理:我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们原创 2014-11-10 11:25:17 · 806 阅读 · 0 评论 -
决策树
ID3算法,C4.5算法,CART算法 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。 缺点:可能会产生过度匹配问题。 适用数据类型:数值型和标称型。 1.收集数据:可以使用任何方法。 2.准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。 3.分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合原创 2014-11-10 11:26:55 · 337 阅读 · 0 评论 -
Apriori算法
优点:易编码实现。 缺点:在大数据集上可能较慢。 适用数据类型:数值型或者标称型数据。 规则的支持度和置信度是规则兴趣度的两种度量。它们分别反映所发现规则的有用性和确定性。关联规则的支持度为2%,意味着所分析的所有事务的2%显示计算机和杀毒软件被同时购买。置信度60%意味购买计算机的顾客60%也购买了杀毒软件。 Apriori算法的一般过程 1.收集数据:使用任意方法。 2翻译 2014-12-31 14:40:23 · 691 阅读 · 0 评论 -
神经网络
神经网络是由简单处理单元构成的大规模并行分布式处理器,天然地具有存储经验知识和使之可用的特性。神经网络在两个方面与大脑相似: 1.神经网络是通过学习过程从外界环境中获取知识的。 2.互连神经元的连接强度,即突触权值,用于存储获取的知识。 神经网络的性质和能力 1.非线性。 2.输入输出映射。称之为有教师学习或监督学习的关于学习的流行方法。它使用带表号的训练样例或任务样例对神经网络的突触权翻译 2016-08-06 09:34:08 · 541 阅读 · 0 评论 -
智能优化算法
蚁群算法 模拟退火算法 遗传算法 鱼群算法 神经网络原创 2016-09-20 11:53:28 · 539 阅读 · 0 评论