0-1背包问题


首先得知道什么是0-1背包问题(knapsack problem)

? 贼,夜入豪宅,可偷之物甚多,而负重能力有限,偷哪些才更加不枉此行?

? 抽象的话,就是:

给定一组多个([公式])物品,每种物品都有自己的重量([公式])和价值([公式]),在限定的总重量/总容量([公式])内,选择其中若干个(也即每种物品可以选0个或1个),设计选择方案使得物品的总价值最高。

? 更加抽象的话:

给定正整数[公式]、给定正整数[公式],求解0-1规划问题:

[公式] , s.t. [公式][公式]

? 示例应用:处理器能力有限时间受限,任务很多,如何选择使得总效用最大?

? 数值例子:如下图。


0-1背包问题的定性

? 对于一般性的0-1背包,

贪婪算法无法得到最优解。

反例,不多解释——

事实上它可能想多差有多差(以 [公式] 作为“贪婪”的标准,也不多解释了)——

? 确定性问题版本的背包问题是NP的,

[公式],求[公式]使得[公式] ”是Karp的21个NPC问题之一(实际上Karp的表述是现在所称的子集和(subset sum)问题)。


0-1背包问题的递推关系

定义子问题 [公式] 为:在前 [公式] 个物品中挑选总重量不超过 [公式] 的物品,每种物品至多只能挑选1个,使得总价值最大;这时的最优值记作 [公式] ,其中 [公式][公式]

考虑第 [公式] 个物品,无外乎两种可能:选,或者不选。

  • 不选的话,背包的容量不变,改变为问题 [公式]
  • 选的话,背包的容量变小,改变为问题 [公式]

最优方案就是比较这两种方案,哪个会更好些:

[公式]

得到

[公式]


“填二维表”的动态规划方法

算法就很自然了:

之前的例子填表的结果是——

(蓝色格子表示本行值发生变化的格子)

然后发生 [公式] 时才会有“取第 [公式] 件物品”发生。

所以从表格右下角“往回看”如果是“垂直下降”就是发生了 [公式] ,而只有“走斜线”才是“取了”物品。

这个算法的复杂度就很容易算了——每一个格子都要填写数字,所以时间复杂度和空间复杂度都是 [公式] 。当" [公式] "时(就不严谨地使用渐近分析的语言了),复杂度是 [公式]


所谓“填一维表”的动态规划方法

? 其实呢,上面那个二维表,也可以用一行来存储啊!对不啦?

? 所以,根本的区别在于思想,而不是具体存储方式。

那么这个算法的思想又是什么呢?——其实就是:

  • 每行都有些数值相同的哦,所以
  • 只记录每行里那些不同的数值就好了啊。

? 例如上面的表格中,只记录蓝色的部分,

格式是[公式](为了方便阅读,再贴一次图):

[公式]

[公式][公式]

[公式][公式][公式][公式]

[公式][公式][公式][公式][公式][公式][公式][公式]

……(不写了,累)

? 你会说,这也没省什么地方啊?!

的确,对于这个例子来说是这样的——要不然数值太大我画不下。

你假设每个 [公式] 都扩大1000倍,那样的话,表格也扩大到1000倍,填表时间也增加到1000倍,然而蓝色的格子还是那么多

? 好了,继续,下面有三个问题:

  1. [公式][公式] ;(这比较显然)
  2. 什么时候会发生“ [公式] ”的情况?
  3. 什么时候会发生“ [公式] ”的情况?

� 下面来看问题2,一定是发生了“容量扩大后有个新的东西可以放下了”!

所以固定 [公式] ,让 [公式] 变化, [公式] 一定是“阶梯状”的:

  • 有的 [公式] 使得 [公式]
  • 有的 [公式] 使得 [公式]

例如,前面例子中 [公式] 如下图所示:

看下[公式][公式][公式]右移[公式]上移[公式]

所以 [公式][公式] )就是下述两条“阶梯”

在max意义下的“叠加”。

比较[公式][公式] 的“转折点”:

[公式] 的是 [公式][公式] 的是 [公式]

于是:

  • 对于每一个 [公式][公式] 最多只有 [公式] 个“转折点”——因为 [公式] 个物品,最多只有 [公式] 个“选”、“不选”的组合;
  • [公式][公式] 那部分的所有可能的“转折点”就是由 [公式] 的每个转折点 [公式] 变为 [公式];(“可能”这个词后面再解释)
  • 推而广之, [公式][公式] 那部分的所有可能的“转折点”就是由 [公式] 的每个转折点 [公式] 变为 [公式]

设置[公式],则由[公式]得到[公式]的所有可能的“转折点”为[公式]

例如[公式]

例如[公式][公式]

这时有些问题:

  1. 超过 [公式] 的部分可以不用考虑;
  2. 绿色的圆形里有些“转折点”被湮没了——这就是之前说的“可能”的意思。

来看哦, [公式]

于是 [公式] 的所有可能应该是

[公式]

[公式]

[公式]

[公式]

Ok,首先删除掉第二分量大于 [公式] 的(上图红框里)(称作第一类抛弃),得到

[公式]

[公式]

然后按第二分量递增排序,得到:

按道理说,对于阶梯函数来说,如果第二分量是递增的,那么第三分量也应该是递增的。但是上图中红框里不是哦——事实上它们是“被湮没”的“转折点”(上图的黄色圆形)。

所以哦,弃掉他们(称作第二类抛弃),得到 [公式],就是下图 。

而最终结果就是[公式] 的最后一项的第三个分量

[公式]得到[公式] 的过程是(例如):

[公式]

已经按照第二分量递增排序好,

之后先写成

[公式]

然后对第一个三元组,

删除当前位置之后被“湮没”的

对第二个三元组,一定是插入当前位置之后,并被立即“湮没”,

不断这样进行下去,并注意第一类抛弃即可得到 [公式]

[公式],则可以得到(由于分行了,就不在乎三元组的第一分量了):

然后所谓“一维”存储,其实就是把它“存储成了”一维,例如使用两个一维数组和一个start数组做“分割”:

? 然后就是如何得到方案——

[公式] 的最后一个是不是与 [公式] 的最后一个相同,相同的话就直接看 [公式]

[公式] 的最后一个与 [公式] 的最后一个不同,所以一定拿了物品4,然后看 [公式] 第二分量不超过5(= [公式] )的最后一个,是 [公式]

[公式][公式] 的最后一个不同,所以一定拿了物品3;

……然后类推。

? 最后是分析复杂度:

路线是计算 [公式] 的元素个数,然后对 [公式] 求和,就得到了所有“蓝色格子”的数量。

然后,

  • 首先,由于 [公式] 在不考虑两类抛弃的情况下(最差情况就是不发生这两类抛弃),元素个数恰好等于 [公式] 元素数的两倍;也可以这样来看——对于每一个 [公式][公式] 最多只有 [公式] 个“转折点”;
  • [公式] 得到 [公式] 时, [公式] 中各组的第二分量、第三分量一定彼此不同,那么每个 [公式] 中的 [公式] 的取值范围是 [公式] ,第三分量的取值范围是 [公式] 。所以这样的三元组最多有 [公式] 个。

[公式] 求和,得到

  • [公式] ;
  • [公式]
  • [公式]

而由 [公式] 产生 [公式] 的计算过程主要就是产生一个新的对、插入、删除(抛弃),所以这个过程的计算量是和 [公式] 元素数成正比的。

所以得到,无论空间复杂度还是时间复杂度,都是 [公式] 的。

即使 [公式] ,这时的算法复杂度也控制在 [公式] 之内。

原文链接: https://zhuanlan.zhihu.com/p/30959069

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值