Python高级——消息队列(Queue)与进程池(Pool)

Queue消息队列

1.创建

import multiprocessing
queue = multiprocessing.Queue(队列长度)

2.方法

方法描述
put变量名.put(数据),放入数据(如队列已满,则程序进入阻塞状态,等待队列取出后再放入)
put_nowait变量名.put_nowati(数据),放入数据(如队列已满,则不等待队列信息取出后再放入,直接报错)
get变量名.get(数据),取出数据(如队列为空,则程序进入阻塞状态,等待队列防如数据后再取出)
get_nowait变量名.get_nowait(数据),取出数据(如队列为空,则不等待队列放入信息后取出数据,直接报错),放入数据后立马判断是否为空有时为True,原因是放入值和判断同时进行
qsize变量名.qsize(),消息数量
empty变量名.empty()(返回值为True或False),判断是否为空
full变量名.full()(返回值为True或False),判断是否为满

3.进程通信
  因为进程间不共享全局变量,所以使用Queue进行数据通信,可以在父进程中创建两个字进程,一个往Queue里写数据,一个从Queue里取出数据。
例:

import multiprocessing
import time


def write_queue(queue):
    # 循环写入数据
    for i in range(10):
        if queue.full():
            print("队列已满!")
            break
        # 向队列中放入消息
        queue.put(i)
        print(i)
        time.sleep(0.5)


def read_queue(queue):
    # 循环读取队列消息
    while True:
        # 队列为空,停止读取
        if queue.empty():
            print("---队列已空---")
            break

        # 读取消息并输出
        result = queue.get()
        print(result)


if __name__ == '__main__':

    # 创建消息队列
    queue = multiprocessing.Queue(3)
    # 创建子进程
    p1 = multiprocessing.Process(target=write_queue, args=(queue,))
    p1.start()
    # 等待p1写数据进程执行结束后,再往下执行
    p1.join()
    p1 = multiprocessing.Process(target=read_queue, args=(queue,))
    p1.start()

执行结果:
这里写图片描述

Pool进程池

  初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会用之前的进程来执行新的任务。
1.创建

import multiprocessing
pool = multiprocessing.Pool(最大进程数)

2.方法

方法描述
apply()以同步方式添加进程
apply_async()以异步方式添加进程
close()关闭Pool,使其不接受新任务(还可以使用)
terminate()不管任务是否完成,立即终止
join()主进程阻塞,等待子进程的退出,必须在close和terminate后使用

3.进程池内通信
创建进程池内Queue消息队列通信
import multiprocessing
Queue:queue = multiprocessing.Manager().Queue()
例:
import multiprocessing
import time

写入数据的方法

def write_data(queue):
# for循环 向消息队列中写入值
for i in range(5):
# 添加消息
queue.put(i)
print(i)
time.sleep(0.2)
print(“队列已满~”)

创建读取数据的方法

def read_data(queue):
    # 循环读取数据
    while True:
        # 判断队列是否为空
        if queue.qsize() == 0:
            print("队列为空~")
            break
        # 从队列中读取数据
        result = queue.get()
        print(result)


if __name__ == '__main__':
    # 创建进程池
    pool = multiprocessing.Pool(2)
    # 创建进程池队列
    queue = multiprocessing.Manager().Queue()
    # 在进程池中的进程间进行通信
    # 使用线程池同步的方式,先写后读
    # pool.apply(write_data, (queue, ))
    # pool.apply(read_data, (queue, ))
    # apply_async() 返回ApplyResult 对象
    result = pool.apply_async(write_data, (queue, ))
    # ApplyResult对象的wait() 方法,表示后续进程必须等待当前进程执行完再继续
    result.wait()
    pool.apply_async(read_data, (queue, ))
    pool.close()
    # 异步后,主线程不再等待子进程执行结束,再结束
    # join() 后,表示主线程会等待子进程执行结束后,再结束
    pool.join()

运行结果:
这里写图片描述
4.案例(文件夹copy器)
代码:

# 导入模块
import os
import multiprocessing


# 拷贝文件函数
def copy_dir(file_name, source_dir, desk_dir):
    # 要拷贝的文件路径
    source_path = source_dir+'/'+file_name
    # 目标路径
    desk_path = desk_dir+'/'+file_name
    # 获取文件大小
    file_size = os.path.getsize(source_path)
    # 记录拷贝次数
    i = 0
    # 以二进制度读方式打开原文件
    with open(source_path, "rb") as source_file:
        # 以二进制写入方式创建并打开目标文件
        with open(desk_path, "wb") as desk_file:
            # 循环写入
            while True:
                # 读取1024字节
                file_data = source_file.read(1024)
                # 如果读到的不为空,则将读到的写入目标文件
                if file_data:
                    desk_file.write(file_data)
                    # 读取次数+1
                    i += 1
                    # 拷贝百分比进度等于拷贝次数*1024*100/文件大小
                    n = i*102400/file_size
                    if n >= 100:
                        n = 100
                    print(file_name, "拷贝进度%.2f%%" % n)
                else:
                    print(file_name, "拷贝成功")
                    break


if __name__ == '__main__':
    # 要拷贝的文件夹
    source_dir = 'test'
    # 要拷贝到的路径
    desk_dir = 'C:/Users/Administrator/Desktop/'+source_dir
    # 存在文件夹则不创建
    try:
        os.mkdir(desk_dir)
    except:
        print("目标文件夹已存在,未创建")
    # 获取文件夹内文件目录,存到列表里
    file_list = os.listdir(source_dir)
    print(file_list)
    # 创建进程池,最多同时运行3个子进程
    pool = multiprocessing.Pool(3)
    for file_name in file_list:
        # 异步方式添加到进程池内
        pool.apply_async(copy_dir, args=(file_name, source_dir, desk_dir))
    # 关闭进程池(停止添加,已添加的还可运行)
    pool.close()
    # 让主进程阻塞,等待子进程结束
    pool.join()

运行结果:
这里写图片描述

### 回答1: 在 Python 中,可以使用 `multiprocessing` 库中的 `Queue` 类来在进程中传递信息。 首先,在主进程中创建一个 `Queue` 对象,然后将该对象作为参数传递给进程中的每个进程: ```python from multiprocessing import Queue, Process def worker(queue): # 从队列中获取信息 message = queue.get() # 处理信息 print(message) if __name__ == '__main__': # 创建一个队列 queue = Queue() # 创建进程,并将队列作为参数传递给每个进程 with Process(target=worker, args=(queue,)) as process: # 向队列中添加信息 queue.put('Hello, World!') # 等待进程完成 process.join() ``` 在进程中的每个进程中,可以使用 `Queue.get()` 方法从队列中获取信息,并使用 `Queue.put()` 方法向队列中添加信息。 注意,在使用进程和队列时,应该使用 `multiprocessing` 库中的进程和队列,而不是 `threading` 库中的线程和队列。 ### 回答2: 在Python中使用进程时,可以使用队列来传递信息。 首先,需要导入`multiprocessing`模块中的`Pool`和`Queue`。 使用`Pool`创建进程对象,可以指定进程数。然后,使用`Queue`创建一个队列对象,用于在进程之间传递信息。 在主进程中,将需要传递的信息通过`put`方法放入队列中。 在子进程中,使用`get`方法从队列中取出信息。 下面是一个示例代码: ```python from multiprocessing import Pool, Queue def worker(queue): data = queue.get() # 从队列中取出信息 # 进行子进程的操作 if __name__ == '__main__': pool = Pool(processes=4) # 创建进程,指定进程数为4 queue = Queue() # 创建队列对象 for i in range(10): queue.put(i) # 向队列中放入信息 pool.apply_async(worker, (queue,)) # 在进程中异步执行worker函数 pool.close() # 关闭进程 pool.join() # 等待所有子进程结束 ``` 在上面的示例代码中,创建了一个进程对象`pool`,队列对象`queue`以及放入队列的信息。 然后,通过`apply_async`方法在进程中异步执行`worker`函数,并将队列作为参数传递给子进程。 子进程中使用`get`方法从队列中取出信息。 最后,关闭进程并等待所有子进程结束。 这样,就可以在Python中使用队列在进程中传递信息了。 ### 回答3: 在Python中,在进程中使用队列进行信息传递的方法如下: 首先,需要导入`multiprocessing`模块中的`Pool`类和`Queue`类: ```python from multiprocessing import Pool, Queue ``` 然后,创建一个共享队列对象: ```python queue = Queue() ``` 接下来,在进程的任务函数中,通过将队列作为参数传递给进程中的函数,在不同的进程之间进行信息传递: ```python def task_function(queue): # 在进程中需要传递的信息 message = "Hello from process {}".format(os.getpid()) # 将信息放入队列中 queue.put(message) # 创建进程 pool = Pool() # 向进程中添加任务 pool.apply_async(task_function, args=(queue,)) # 关闭进程 pool.close() # 等待所有任务完成 pool.join() ``` 在上述代码中,我们调用了`apply_async`方法向进程中添加任务,并将队列作为参数传递给任务函数`task_function`。然后,我们关闭进程,并使用`join`方法等待所有任务的完成。 最后,可以通过在主进程中从队列中获取数据来获得在进程中传递的信息: ```python while not queue.empty(): message = queue.get() print(message) ``` 上述代码中的`queue.empty()`方法用于判断队列是否为空,`queue.get()`方法用于从队列中获取数据。 通过以上步骤,就可以在Python进程中使用队列进行信息传递了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值