LeetCode 刷题总结 (array)-----4

Q53. Maximum Subarray https://leetcode.com/problems/maximum-subarray/

idea: 暴力解法

找到所有subarray,记录具有最大sum的子数组。

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        max_sum = -float('inf')
        for i in range(len(nums)):
            temp_sum = 0
            for j in range(i,len(nums)):
                temp_sum += nums[j]
                if temp_sum > max_sum:
                    start = i
                    end  = j
                    max_sum = temp_sum
        return sum(nums[start:end+1])

时间复杂度为O(N2),速度很慢。

discussion解决方案:动态规划!优秀的解决方案!

针对每一个元素,有两个部分需要关注:① “过去部分” pre_sum;② “当前部分”nums[i]本身

他可以有两种选择,① 加上pre_sum,本身融入到子串当中;② 以“当前部分”为子串起始位置,完全抛弃“过去部分”。

到底该怎么选择呢?那就是:如果 pre_sum<0,那就选择方案②,否则选择方案①。用程序表达起来就是:

max(pre_sum+nums[i],nums[i])

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        
        sub_sum = nums[0]
        max_sum = nums[0]
        for i in range(1,len(nums)):
            sub_sum = max(sub_sum + nums[i],nums[i])
            if sub_sum > max_sum:
                max_sum = sub_sum
        return max_sum
        

动态规划的思想就是,上一个状态的结果影响下一个状态的结果,找到每一个状态的最优方案。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值