- 博客(7)
- 收藏
- 关注
原创 Milvus索引总结
FLAT 的精确度很高,因为它采用的是穷举搜索方法,这意味着每次查询都要将目标输入与数据集中的每一组向量进行比较。乘积量化不需要计算目标向量与所有单元中心的距离,而是能够计算目标向量与每个低维空间聚类中心的距离,大大降低了算法的时间复杂度和空间复杂度。在检索过程中,Milvus 会首先找到查询向量所属的簇,然后只对该簇中的向量进行精确的相似度计算,而不是对整个数据集进行计算,这样能够大大提高检索速度。即内积,是一种计算向量相似度的常用方法,如果你对查询和文档向量进行了规范化(使得它们的模长为 1),那么。
2025-03-06 11:20:20
1544
原创 LangGraph流式输出失效 踩坑记录贴
本人目前正在使用Langgraph编写工作流,这两天碰到了一个问题,排查蛮久,记录一下.此时,llm输出由流式输出变成了同步等待所有内容完毕才进行输出。问题原因目前尚未查出来,希望各位有了解这一块的可以解答下。
2025-03-03 16:17:03
439
4
原创 基于BERT模型对评价进行情感分析
定义设备信息 选择是GPU还是cpu# 将模型加载到device上# 增量微调,根据 (dense): Linear(in_features=768, out_features=768, bias=True) 进行下游匹配处理# 定义下游任务(增量微调模型->情感分析)#设计全连接网络,设置in_features参数为加载的bert模型特征提取维度768,设置out_features进行二分类任务# 冻结模型的参数,让他不参与训练# 增量模型参与训练return out。
2025-02-21 10:57:11
365
原创 Transformer架构Q/A总结
目录本文Q/A来自于CHATGPT问答,旨在自我总结与学习分享1.什么是自注意力机制2.基本原理3.优势4.自注意力机制的q,k,v是如何得到的具体步骤5.输入向量是怎么来的(1) 直接使用预训练的词嵌入(2) 训练自己的嵌入层(3) 结合位置编码6.自注意力机制的步骤(Q/A)7.自注意力机制在transformer架构中的作用1. 捕捉当前向量与其他向量的依赖关系2. 计算相似度并生成权重3. 加权求和生成输出8.为什么要捕捉依赖关系9.自注意力机制流程举例1. 生成 Q、K、V 向量。
2025-02-12 18:02:07
1933
原创 Milvus向量数据库集合操作初尝试
是 Milvus 中存储数据的最基本单元。它类似于数据库中的一个表(table)。集合定义了数据的整体结构,包括数据类型、字段、索引等。是集合中存储数据的最小单位。每个集合都有多个字段,每个字段代表集合中存储的一类数据。字段定义了数据的结构和类型。
2025-02-12 17:04:49
1729
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人