题干:
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)
翻译:
题目要求跟3sum可以说如出一辙,只是改成了4个数
分析:
外面再套一个for循环:
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> ret;
if (nums.size() <= 3) return ret;
sort(nums.begin(), nums.end());
//外面再套一个for
for (int i = 0; i < nums.size() - 3; i++) {
for (int j = i + 1; j < nums.size() - 2; j++) {
int k = j + 1;
int l = nums.size() - 1;
while (k < l) {
if (nums[i] + nums[j] + nums[k] + nums[l] == target) {
vector<int> curr;
curr.push_back(nums[i]);
curr.push_back(nums[j]);
curr.push_back(nums[k]);
curr.push_back(nums[l]);
ret.push_back(curr);
do { k++; } while (k < l&&nums[k] == nums[k - 1]);
do { l--; } while (k < l&&nums[l] == nums[l + 1]);
}
else if (nums[i] + nums[j] + nums[k] + nums[l] < target)
k++;
else
l--;
}
while (j < nums.size() - 2 && nums[j] == nums[j + 1]) j++;
}
while (i < nums.size() - 3 && nums[i] == nums[i + 1]) i++;
}
return ret;
}
};
由于多套了一个for循环,时间复杂度增大到O(n³)
单独谈论这道题实际一点意思都没有,(不过确实,leetcode上有很多相似的问题是几乎一模一样的思路和核心代码)这里我们不妨发散一下思维,从2sum 3sum到4sum一路做下来我们除了在hash表和指针之间有过不同的选择外,似乎都在一层一层的向外套for循环,如果不是4sum,是5sum 6sum甚至k sum呢?或者干脆不给k,找出全部可能的组合?我们还能一层一层的套for循环么,显然是不行的,这时我们就需要一点算法思想来帮忙,这就是回溯法
回溯法的思想实际上我们并不陌生,树的前中后序遍历,图的深度遍历都是回溯法的例子,所谓回溯法,就是把求解空间抽象成一个图,然后从图中某一点出发,利用深度遍历找到所有满足条件的解
回到这个问题,我们完全可以定义一个变量K,代表还差几个元素,一个变量i代表正在访问的位置,并且用vector容器存储所有符合条件的路径,这里只给出思路,具体代码实现请看Combination Sum系列题解