L1-028 判断素数

一、题目再现

本题的目标很简单,就是判断一个给定的正整数是否素数。

输入格式:

输入在第一行给出一个正整数N(≤ 10),随后N行,每行给出一个小于2^31的需要判断的正整数。

输出格式:

对每个需要判断的正整数,如果它是素数,则在一行中输出Yes,否则输出No

输入样例:

2
11
111

输出样例:

Yes
No

二、思路 

本题的难点在于素数的定义以及判断素数的函数的编写;还有一个运行超时问题。

三、知识点

素数的定义

质数(Prime number),又称素数,指在大于1自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个正因数的数)。大于1的自然数若不是质数,则称之为合数(也称为合成数)。

sqrt函数

C ++中的sqrt()函数返回数字的平方根。

 √x = sqrt(x)

此函数在<cmath>头文件中定义。

四、问题

超时问题://用i*i<=n 就会超时;用i <= sqrt(n)就可以

在一般情况下,乘法运算通常比sqrt(开方运算)要快。乘法运算是计算机硬件中的基本运算之一,通常在硬件级别进行高度优化,因此速度较快。sqrt运算涉及更复杂的数学操作,可能需要更多的计算资源,因此相对较慢。

但是,在本题中需要判断的数据为小于2^31,也就是说可能数据会很大,那么sqrt函数的运行时间可能要比乘法的少【个人理解】

五、AC代码

#include <iostream>
#include <cmath>
using namespace std;

bool isPrime(int n) {
	/*质数(Prime number),又称素数,指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数
	(也可定义为只有1与该数本身两个正因数的数)。大于1的自然数若不是质数,则称之为合数(也称为合成数)。*/

	//一个数如果能被 除了1和该数自身外 的自然数 整除,那么return false ;否则return true

	if (n <= 1) {
		return false;  // 1和负数都不是素数
	}

	if (n <= 3) {
		return true;  // 2和3是素数
	}

	// 检查是否可以被2或3整除
	if (n % 2 == 0 || n % 3 == 0) {
		return false;
	}

	// 检查是否可以被6k ± 1的形式整除,其中k是正整数 
	//例如 6k ± 1在1~10中为5,7  其他的数字上面已经判断了。
	//比如1是第一if语句
	//2的倍数   2、4、6能被2整除(第三个if语句)
	//3的倍数   3、6、9能被3整除(第三个if语句)
	for (int i = 5; i <= sqrt(n); i += 6) {//用i*i<=n 就会超时
		if (n % i == 0 || n % (i + 2) == 0) {
			return false;
		}
	}

	return true;
}

int main() {
	int n;
	cin >> n;
	int m[10];
	for (int i = 0; i < n;i++)
	{
		cin >> m[i];
		if (isPrime(m[i]))
		{
			cout << "Yes" << endl;
		}
		else
		{
			cout << "No" << endl;
		}
	}
	return 0;
}

其他判断一个数是否为素数的函数(我还没太理解)

bool isPrime(int n)   //判断素数
{
    if(n <= 1)
    {   
        return false;
    }
    for(int i = 2; i <= sqrt(n); i++)
    {
        if(n%i == 0)
        {
            return false;
        }
    }
    return true;
}

欢迎评论区交流~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值